Robotics
Where hardware, software and machine intelligence come together.
Our research is interdisciplinary and focuses on sensing, planning, reasoning, and control of single and multi-agent systems, including both manipulation and mobile robots. We strive to develop algorithms and methods for factory automation, smart building and transportation applications using machine learning, computer vision, RF/optical sensing, wireless communications, control theory and signal processing. Key research themes include bin picking and object manipulation, sensing and mapping of indoor areas, coordinated control of robot swarms, as well as robot learning and simulation.
Quick Links
-
Researchers
Diego
Romeres
Devesh K.
Jha
Daniel N.
Nikovski
Stefano
Di Cairano
Siddarth
Jain
Arvind
Raghunathan
William S.
Yerazunis
Radu
Corcodel
Yebin
Wang
Yuki
Shirai
Toshiaki
Koike-Akino
Abraham P.
Vinod
Avishai
Weiss
Chiori
Hori
Tim K.
Marks
Scott A.
Bortoff
Jonathan
Le Roux
Ye
Wang
Anoop
Cherian
Matthew
Brand
Philip V.
Orlik
Alexander
Schperberg
Bingnan
Wang
Purnanand
Elango
Abraham
Goldsmith
Jianlin
Guo
Jing
Liu
Hassan
Mansour
Pedro
Miraldo
Saviz
Mowlavi
-
Awards
-
AWARD University of Padua and MERL team wins the AI Olympics with RealAIGym competition at IROS24 Date: October 17, 2024
Awarded to: Niccolò Turcato, Alberto Dalla Libera, Giulio Giacomuzzo, Ruggero Carli, Diego Romeres
MERL Contact: Diego Romeres
Research Areas: Artificial Intelligence, Dynamical Systems, Machine Learning, RoboticsBrief- The team composed of the control group at the University of Padua and MERL's Optimization and Robotic team ranked 1st out of the 4 finalist teams that arrived to the 2nd AI Olympics with RealAIGym competition at IROS 24, which focused on control of under-actuated robots. The team was composed by Niccolò Turcato, Alberto Dalla Libera, Giulio Giacomuzzo, Ruggero Carli and Diego Romeres. The competition was organized by the German Research Center for Artificial Intelligence (DFKI), Technical University of Darmstadt and Chalmers University of Technology.
The competition and award ceremony was hosted by IEEE International Conference on Intelligent Robots and Systems (IROS) on October 17, 2024 in Abu Dhabi, UAE. Diego Romeres presented the team's method, based on a model-based reinforcement learning algorithm called MC-PILCO.
- The team composed of the control group at the University of Padua and MERL's Optimization and Robotic team ranked 1st out of the 4 finalist teams that arrived to the 2nd AI Olympics with RealAIGym competition at IROS 24, which focused on control of under-actuated robots. The team was composed by Niccolò Turcato, Alberto Dalla Libera, Giulio Giacomuzzo, Ruggero Carli and Diego Romeres. The competition was organized by the German Research Center for Artificial Intelligence (DFKI), Technical University of Darmstadt and Chalmers University of Technology.
-
AWARD Honorable Mention Award at NeurIPS 23 Instruction Workshop Date: December 15, 2023
Awarded to: Lingfeng Sun, Devesh K. Jha, Chiori Hori, Siddharth Jain, Radu Corcodel, Xinghao Zhu, Masayoshi Tomizuka and Diego Romeres
MERL Contacts: Radu Corcodel; Chiori Hori; Siddarth Jain; Devesh K. Jha; Diego Romeres
Research Areas: Artificial Intelligence, Machine Learning, RoboticsBrief- MERL Researchers received an "Honorable Mention award" at the Workshop on Instruction Tuning and Instruction Following at the NeurIPS 2023 conference in New Orleans. The workshop was on the topic of instruction tuning and Instruction following for Large Language Models (LLMs). MERL researchers presented their work on interactive planning using LLMs for partially observable robotic tasks during the oral presentation session at the workshop.
-
AWARD Joint University of Padua-MERL team wins Challenge 'AI Olympics With RealAIGym' Date: August 25, 2023
Awarded to: Alberto Dalla Libera, Niccolo' Turcato, Giulio Giacomuzzo, Ruggero Carli, Diego Romeres
MERL Contact: Diego Romeres
Research Areas: Artificial Intelligence, Machine Learning, RoboticsBrief- A joint team consisting of members of University of Padua and MERL ranked 1st in the IJCAI2023 Challenge "Al Olympics With RealAlGym: Is Al Ready for Athletic Intelligence in the Real World?". The team was composed by MERL researcher Diego Romeres and a team from University Padua (UniPD) consisting of Alberto Dalla Libera, Ph.D., Ph.D. Candidates: Niccolò Turcato, Giulio Giacomuzzo and Prof. Ruggero Carli from University of Padua.
The International Joint Conference on Artificial Intelligence (IJCAI) is a premier gathering for AI researchers and organizes several competitions. This year the competition CC7 "AI Olympics With RealAIGym: Is AI Ready for Athletic Intelligence in the Real World?" consisted of two stages: simulation and real-robot experiments on two under-actuated robotic systems. The two robotics systems were treated as separate tracks and one final winner was selected for each track based on specific performance criteria in the control tasks.
The UniPD-MERL team competed and won in both tracks. The team's system made strong use of a Model-based Reinforcement Learning algorithm called (MC-PILCO) that we recently published in the journal IEEE Transaction on Robotics.
- A joint team consisting of members of University of Padua and MERL ranked 1st in the IJCAI2023 Challenge "Al Olympics With RealAlGym: Is Al Ready for Athletic Intelligence in the Real World?". The team was composed by MERL researcher Diego Romeres and a team from University Padua (UniPD) consisting of Alberto Dalla Libera, Ph.D., Ph.D. Candidates: Niccolò Turcato, Giulio Giacomuzzo and Prof. Ruggero Carli from University of Padua.
See All Awards for Robotics -
-
News & Events
-
NEWS MERL researchers present 13 papers at ACC 2025 Date: July 8, 2025 - July 10, 2025
Where: Denver, USA
MERL Contacts: Ankush Chakrabarty; Vedang M. Deshpande; Stefano Di Cairano; Purnanand Elango; Jordan Leung; Saviz Mowlavi; Diego Romeres; Abraham P. Vinod; Yebin Wang; Avishai Weiss
Research Areas: Control, Dynamical Systems, Electric Systems, Machine Learning, Multi-Physical Modeling, RoboticsBrief- MERL researchers presented 13 papers at the recently concluded American Control Conference (ACC) 2025 in Denver, USA. The papers covered a wide range of topics including Bayesian optimization for personalized medicine, machine learning for battery performance in eVTOLs, model predictive control for space and building systems, process systems engineering for sustainability, GNSS-RTK optimization, convex set manipulation, PDE control, servo system modeling, battery fault diagnosis, truck fleet coordination, interactive motion planning, and satellite station keeping. Additionally, MERL researchers (Vedang Deshpande and Ankush Chakrabarty) organized an invited session on design and optimization of energy systems.
As a sponsor of the conference, MERL maintained a booth for open discussions with researchers and students, and hosted a special session to discuss highlights of MERL research and work philosophy.
- MERL researchers presented 13 papers at the recently concluded American Control Conference (ACC) 2025 in Denver, USA. The papers covered a wide range of topics including Bayesian optimization for personalized medicine, machine learning for battery performance in eVTOLs, model predictive control for space and building systems, process systems engineering for sustainability, GNSS-RTK optimization, convex set manipulation, PDE control, servo system modeling, battery fault diagnosis, truck fleet coordination, interactive motion planning, and satellite station keeping. Additionally, MERL researchers (Vedang Deshpande and Ankush Chakrabarty) organized an invited session on design and optimization of energy systems.
-
NEWS MERL contributes to 2025 European Control Conference Date: June 24, 2025 - June 27, 2025
Where: Thessaloniki
MERL Contacts: Stefano Di Cairano; Daniel N. Nikovski; Diego Romeres; Yebin Wang
Research Areas: Control, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, RoboticsBrief- MERL researchers contributed to both the technical program and workshop organization at the 2025 European Control Conference (ECC), held in Thessaloniki, Greece, from June 24 to 27. ECC is one of the premier conferences in the field of control.
In the main conference, MERL researchers presented four papers covering a range of topics, including: Representation learning, Motion planning for tractor-trailers, Motion planning for mobile manipulators, Learning high-dimensional dynamical systems, Model learning for robotics.
Additionally, MERL co-organized a workshop with the University of Padua titled “Reinforcement Learning for Robotic Control: Recent Developments and Open Challenges.” MERL researcher Diego Romeres also delivered an invited talk titled “Human-Robot Collaborative Assembly” in that workshop.
- MERL researchers contributed to both the technical program and workshop organization at the 2025 European Control Conference (ECC), held in Thessaloniki, Greece, from June 24 to 27. ECC is one of the premier conferences in the field of control.
See All News & Events for Robotics -
-
Internships
-
CA0165: Internship - Optimization of Aerial Robot Coordination
MERL is seeking a self-motivated and qualified individual to work on developing an integer/mixed-integer programming solver customarily designed for coordination planning of aerial drones. The ideal candidate will be a PhD student in computer science, mathematics, industrial engineering, or a related discipline, with a solid background in integer optimization. Preferred skills include knowledge of branch-price-and-cut algorithm or column generation, and hands-on experience with callbacks of the Gurobi Optimizer; strong programming skills and experience with at least one of Python, Julia, C/C++, Matlab are also expected. Publication of results produced during the internship is desired. The expected start date is in Fall 2025 or Spring 2026, for a duration of 3- months.
Required Specific Experience
- Significant hands-on experience with integer optimization.
- Experience with trajectory optimization is a plus.
- Fluency in at least one of: Python, Julia, C/C++, Matlab
- Completed their MS, or >30% of their PhD program
- Significant hands-on experience with integer optimization.
-
OR0115: Internship - Whole-body dexterous manipulation
MERL is looking for a highly motivated individual to work on whole-body dexterous manipulation. The research will develop robot motor skills for whole-body, dexterous manipulation using optimization and/or learning algorithms. The ideal candidate should have experience in either one or multiple of the following topics: Optimization Algorithms for contact systems, Reinforcement Learning, control through contacts, and Behavioral cloning. Senior PhD students in robotics and engineering with a focus on contact-rich manipulation are encouraged to apply. Prior experience working with physical robotic systems (and vision and tactile sensors) is required as results need to be implemented on a physical hardware. Good coding skills in Python ML libraries like PyTorch etc. and/or relevant Optimization packages is required. A successful internship will result in submission of results to a peer-reviewed robotics journal in collaboration with MERL researchers. The expected duration of internship is 4-5 months with start date in May/June 2025. This internship is preferred to be onsite at MERL.
Required Specific Experience
- Prior experience working with physical hardware system is required.
- Prior publication experience in robotics venues like ICRA,RSS, CoRL.
-
CV0063: Internship - Visual Simultaneous Localization and Mapping
MERL is looking for a self-motivated graduate student to work on Visual Simultaneous Localization and Mapping (V-SLAM). Based on the candidate’s interests, the intern can work on a variety of topics such as (but not limited to): camera pose estimation, feature detection and matching, visual-LiDAR data fusion, pose-graph optimization, loop closure detection, and image-based camera relocalization. The ideal candidate would be a PhD student with a strong background in 3D computer vision and good programming skills in C/C++ and/or Python. The candidate must have published at least one paper in a top-tier computer vision, machine learning, or robotics venue, such as CVPR, ECCV, ICCV, NeurIPS, ICRA, or IROS. The intern will collaborate with MERL researchers to derive and implement new algorithms for V-SLAM, conduct experiments, and report findings. A submission to a top-tier conference is expected. The duration of the internship and start date are flexible.
Required Specific Experience
- Experience with 3D Computer Vision and Simultaneous Localization & Mapping.
See All Internships for Robotics -
-
Openings
See All Openings at MERL -
Recent Publications
- "Disentangled Object-Centric Configuration Representation Learning for Articulated Robot Arms", 11th International Conference on Control, Decision and Information Technologies CoDIT'25, July 2025.BibTeX TR2025-108 PDF
- @inproceedings{Nikovski2025jul,
- author = {Nikovski, Daniel N.},
- title = {{Disentangled Object-Centric Configuration Representation Learning for Articulated Robot Arms}},
- booktitle = {11th International Conference on Control, Decision and Information Technologies CoDIT'25},
- year = 2025,
- month = jul,
- url = {https://www.merl.com/publications/TR2025-108}
- }
, - "Truck Fleet Coordination for Warehouse Trailer Management by Temporal Logic with Energy Constraints", American Control Conference (ACC), July 2025.BibTeX TR2025-103 PDF
- @inproceedings{Cardona2025jul,
- author = {Cardona, Gustavo and Vasile, Cristian-Ioan and {Di Cairano}, Stefano},
- title = {{Truck Fleet Coordination for Warehouse Trailer Management by Temporal Logic with Energy Constraints}},
- booktitle = {American Control Conference (ACC)},
- year = 2025,
- month = jul,
- url = {https://www.merl.com/publications/TR2025-103}
- }
, - "Safe Interactive Motion Planning by Differentiable Optimal Control and Online Preference Learning", American Control Conference (ACC), July 2025.BibTeX TR2025-104 PDF
- @inproceedings{ChavezArmijos2025jul,
- author = {Chavez Armijos, Andres and Berntorp, Karl and {Di Cairano}, Stefano},
- title = {{Safe Interactive Motion Planning by Differentiable Optimal Control and Online Preference Learning}},
- booktitle = {American Control Conference (ACC)},
- year = 2025,
- month = jul,
- url = {https://www.merl.com/publications/TR2025-104}
- }
, - "A Unified Framework for Gaussian-Based Scene Representation and Reactive Robot Control", Robotics: Science and Systems (RSS) 2025 Workshop on Gaussian Representations for Robot Autonomy, June 2025.BibTeX TR2025-096 PDF
- @inproceedings{Choi2025jun,
- author = {Choi, Ho Jin and Jain, Siddarth},
- title = {{A Unified Framework for Gaussian-Based Scene Representation and Reactive Robot Control}},
- booktitle = {Robotics: Science and Systems (RSS) 2025 Workshop on Gaussian Representations for Robot Autonomy},
- year = 2025,
- month = jun,
- url = {https://www.merl.com/publications/TR2025-096}
- }
, - "Enhanced Agility and Safety in Mobile Manipulators through Centroidal Momentum-Based Motion Planning", European Control Conference (ECC), June 2025.BibTeX TR2025-092 PDF
- @inproceedings{Dai2025jun,
- author = {Dai, Min and Lu, Zehui and Li, Na and Wang, Yebin},
- title = {{Enhanced Agility and Safety in Mobile Manipulators through Centroidal Momentum-Based Motion Planning}},
- booktitle = {European Control Conference (ECC)},
- year = 2025,
- month = jun,
- url = {https://www.merl.com/publications/TR2025-092}
- }
, - "A Hierarchical Approach for Tractor-trailer Motion Planning Using Graph Search and Reinforcement Learning", European Control Conference (ECC), June 2025.BibTeX TR2025-093 PDF
- @inproceedings{Ma2025jun,
- author = {Ma, Haitong and Zhang, Tianpeng and Li, Na and {Di Cairano}, Stefano and Wang, Yebin},
- title = {{A Hierarchical Approach for Tractor-trailer Motion Planning Using Graph Search and Reinforcement Learning}},
- booktitle = {European Control Conference (ECC)},
- year = 2025,
- month = jun,
- url = {https://www.merl.com/publications/TR2025-093}
- }
, - "State Representation Learning for Visual Servo Control", European Control Conference (ECC), June 2025.BibTeX TR2025-094 PDF
- @inproceedings{Wang2025jun,
- author = {Wang, Jen-Wei and Nikovski, Daniel N.},
- title = {{State Representation Learning for Visual Servo Control}},
- booktitle = {European Control Conference (ECC)},
- year = 2025,
- month = jun,
- url = {https://www.merl.com/publications/TR2025-094}
- }
, - "Learning Positive Definite Inertia Matrices in Black-Box Inverse Dynamics Models via Gaussian Processes: a Constraint Learning Approach", European Control Conference (ECC), June 2025.BibTeX TR2025-090 PDF
- @inproceedings{Giacomuzzo2025jun,
- author = {Giacomuzzo, Giulio and Romeres, Diego and Carli, Ruggero and Dalla Libera, Alberto},
- title = {{Learning Positive Definite Inertia Matrices in Black-Box Inverse Dynamics Models via Gaussian Processes: a Constraint Learning Approach}},
- booktitle = {European Control Conference (ECC)},
- year = 2025,
- month = jun,
- url = {https://www.merl.com/publications/TR2025-090}
- }
,
- "Disentangled Object-Centric Configuration Representation Learning for Articulated Robot Arms", 11th International Conference on Control, Decision and Information Technologies CoDIT'25, July 2025.
-
Videos
-
Software & Data Downloads
-
Lagrangian Inspired Polynomial for Robot Inverse Dynamics -
Monte Carlo Probabilistic Inference for Learning COntrol -
Python-based Robotic Control & Optimization Package -
Context-Aware Zero Shot Learning -
Online Feature Extractor Network -
Quasi-Newton Trust Region Policy Optimization -
Circular Maze Environment
-