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Abstract—Traditional approaches for robotic arm motion plan-
ning assume static environments and often depend on prior
knowledge about the shape and location of obstacles. Current
scene mapping methods enable detailed scene reconstruction,
but they are mostly suited for static scenes and they struggle
to balance computational efficiency and fidelity. In this paper,
we propose a unified framework for Gaussian-based scene rep-
resentation and collision-free reactive robot control in unknown
environments. We propose a real-time method for dynamic scene
reconstruction from RGB-D images, enhancing the 3D Gaussian
Splatting with key improvements under a fixed budget of Gaus-
sians. Additionally, we introduce a technique for computing the
signed distance function of the reconstructed environment using
isotropic Gaussians, providing reduced computational complexity
and smooth interpolation for computations of collision probabil-
ity and reactive control. Our method demonstrates promising
results in robot experiments across a range of environments,
both in simulations and real-world settings.

I. INTRODUCTION

Generating collision-free motions for a robotic manipulator
in unknown environments remains a significant challenge.
While robots perform reliably in structured settings like fac-
tory floors—where tasks are repetitive and object locations are
fixed—these environments are often engineered at high cost to
ensure repeatability. In contrast, real-world environments are
unstructured, dynamic, and lack prior information, requiring
robots to jointly perceive the environment and adapt to changes
in real time. It is challenging for any single approach to
satisfy multiple considerations and existing approaches rely on
strong assumptions about obstacle representation and collision
checking, limiting their ability to operate directly in novel
scenes using raw sensor observations.

Perception for scene reconstruction in robotics has tradi-
tionally been built on point-cloud and voxel-based represen-
tations [1, 2]. Point cloud approaches, while being flexible,
lack inherent surface representations and can struggle with
occlusions and temporal consistency. On the other hand,
voxel-based methods struggle to balance voxel granularity
with computational efficiency. Recent breakthroughs—notably
Neural Radiance Fields (NeRF) [3] and 3D Gaussian Splatting
(3D-GS) [4] have demonstrated remarkable capabilities in cap-
turing high-fidelity scene representations. NeRF excels at mod-
eling complex environments through implicit representations,
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Fig. 1: Robot setup in an unstructured environment with a
variety of obstacles. The goal is to reconstruct the scene using
RGB-D cameras and ensure collision-free motion control for
effective task execution.

while 3D-GS offers an explicit and optimizable framework.
Despite their potential, applying these methods directly to
robotics remains challenging due to several limitations: high
computational demands, assumptions of static environments,
and insufficient integration with robotic frameworks.

This paper introduces a unified framework that combines
real-time scene reconstruction using Gaussian representations
with reactive robotic control to perform collision-free robot
motions in unknown environments. Our framework leverages
the strengths of 3D Gaussian Splatting while addressing its
limitations for robotic applications through several key con-
tributions. Our first contribution extends the traditional 3D-
GS with a novel voxel-based filtering and dynamic Gaus-
sian relocation strategy. This hybrid approach enables fast
and efficient creation and updating of environmental changes
from RGB-D image streams while maintaining the fidelity of
reconstruction. This contribution can handle gradual changes
and introductions of new entities in the environment (e.g.,
obstacles or a human). Next, we introduce a new method for
computing continuous signed distance functions from isotropic
Gaussians, providing stable and differentiable collision prob-
ability estimates. This contribution bridges the gap between
traditional discrete distance fields and modern learning-based
representations, offering computational efficiency and numer-
ical stability. The continuous nature of the proposed represen-
tation enables smooth gradient information for robotic control



while maintaining accuracy in distance estimates. We combine
the continuous distance representations with control barrier
functions in a unified framework for perception and control.
Our experimental results, both in simulation and on a physical
robot (Figure 1), are promising. Notably, they represent the
first evaluation of a system capable of handling both translation
and rotation for collision-free robotic control in unknown
environments, while reconstructing scenes in real-time from
an input stream of RGB-D images.

The rest of the article is structured as follows: Section
II reviews related work. Section III introduces the problem
statement and outlines the proposed method. Section IV details
the experiments and presents the results, which are further
discussed in Section V with limitations. Finally, Section VI
concludes the paper and suggests directions for future research.

II. RELATED WORK

Scene reconstruction plays a crucial role in robotic percep-
tion, allowing robots to comprehend and interact with their
environment. Data structures such as point clouds [5], voxel
grids [6], meshes [7], and Signed Distance Functions [8] have
been used to model robot environments. Octomap [2], which
divides the space into grids, remains widely used for scene
representation and collision detection [9].

Recent advancements in differentiable rendering have sig-
nificantly enhanced high-fidelity representations. Neural Ra-
diance Fields (NeRF) [3], model environments as contin-
uous functions, parameterized by neural networks to cap-
ture complex geometries and fine details. This approach has
found applications in robotics, including pose estimation [10],
SLAM [11], and representation learning [12]. While NeRF
excels at generating photorealistic renderings, there is an
increasing need for faster and more efficient methods for
latency sensitive applications. 3D Gaussian Splatting (3D-
GS) [4] emerged to address this challenge by introducing an
advanced explicit scene representation.

Recent studies have extended Gaussian Splatting (3D-GS)
to robotics. ManiGaussian [13] introduces a framework that
parameterize implicit Gaussian points to predict future states
and actions. Splat-MOVER [14] builds a modular stack for
open-vocabulary manipulation. Robo-GS [15] combines Gaus-
sians, grids, and pixels to reconstruct manipulable robot arms,
enabling high-fidelity Real2Sim transfer. SplatSim [16] jointly
reconstructs robots and objects for Sim2Real tasks. However,
existing methods often require dense multi-view inputs or
costly scene-specific optimization, making them impractical
for real-world, dynamic, or unstructured environments. More-
over, inconsistent rendering and free-space artifacts degrade
spatial accuracy—an issue critical in robotics. Our approach
addresses these limitations through voxel-based filtering, dy-
namic Gaussian relocation, and a reformulation of isotropic
Gaussians into a unified distance and collision probability
field, enhancing robustness and real-world applicability.

III. METHOD

Given RGB-D image streams from multiple cameras our
method automatically represent scenes using 3D Gaussians
within a unified framework. Our framework integrates real-
time scene reconstruction with collision-free reactive robotic
control or motion planning (Figure 2). We concentrate on the
robot’s workspace, which encompasses the area where the
robot can interact with objects. In the following sections, we
introduce our proposed framework to tackle the challenges
associated with using Gaussian representations in robotics.

A. Problem Statement

We addresses the problem of maintaining an efficient scene
representation of a continuously changing workspace W ⊂ R3

for collision-free robotic control in the workspace of the robot.
We approximate W using a set of isotropic Gaussians G =
{Gi = (pi, ri, ...)}Ni=1, where pi ∈ R3 and ri > 0 represent
the center and radius of each Gaussian, respectively. The key
challenge is to construct and efficiently update a proxy Signed
Distance Function SDF(x) : W → R that adapts to changes
in G using Gaussian Process Distance Fields. This SDF(x)
needs to balance accuracy and computational efficiency. The
next goal is to enable collision-free, real-time robot control by
using the distance representation and its gradient to formulate
a reactive collision-avoidance constraint.

B. 3D Gaussian Scene Representation

We represent the scene using isotropic 3D Gaussians [17,
18] due to their computational simplicity and efficiency in
rendering and distance calculations. Each Gaussian, Gi, is
defined by 8 parameters: position pi (3), RGB color ci (3),
radius ri (1), and opacity αi (1). To simplify calculations,
the covariance matrix Σi = r2i I , where I is the 3x3 identity
matrix, assumes spherical symmetry. In later stages, we add
additional parameters: density ρi and segmentation label si.

This Gaussian representation enables differentiable render-
ing of color and depth from any viewpoint using RGB-D
streams, allowing scene optimization with observed images
and poses. In camera coordinates, the Gaussians have covari-
ance Σ′:

Σ′ = JWΣWTJT (1)

where J is the Jacobian of the projective transformation,
and W is the view transformation matrix. The pixel color is
computed by alpha-blending Gaussians in front-to-back order:

Ĉ = ΣiciαiΠ
i−1
j=1(1− αi) (2)

Depth is rendered using the center depth di of each Gaussian:

D̂ = ΣidiαiΠ
i−1
j=1(1− αi) (3)

C. Gaussian Splatting for Robotics

Multiple cameras and randomly initialized Gaussians enable
the original GS to reconstruct a scene, but dynamic environ-
ments with changing objects require continuous updates.

We initialize the Gaussians based on the point cloud data
from RGBD cameras, with initial opacity of αinit = 0.5 as



Fig. 2: An overview of our proposed framework, including scene reconstruction via isotropic Gaussian splatting, followed by
occupancy-based density estimation and segmentation, and integration with a Gaussian Process Distance Function to generate
a continuous control barrier function.

in [17]. The radius is set based on the pixel size, clamped
to a maximum value r = min(Dgt/f, rmax), where f is the
camera’s focal length. Gaussian parameters are optimized by
rendering images and comparing them to the ground truth [4].
The loss function used for optimization is:

Lcolor = (1− λ)L1(Ĉ, Cgt) + λLD−SSIM(Ĉ, Cgt)

Ldepth = L1(D̂,Dgt)

Lreg = Σi|αi|
L = λcolorLcolor + λdepthLdepth + λregLreg

(4)

where L1 is least absolute deviations and LD−SSIM is a
loss for difference of structural similarity. Here, λ = 0.2,
λcolor = λdepth = 1, and λreg = 0.02. We use RGBD
images to reduce the reconstruction error for high fidelity.
The regularization term, Lreg, encourages fewer Gaussians.
Noise is added after each Adam optimizer update. In dynamic
situations, Gaussians need to be added, removed, or relocated
beyond the optimization. A mask is first generated to identify
where to add new Gaussians [17]:

Madd = (Dgt < D̂) ∧ (L1(D̂,Dgt) > λMDEMDE) (5)

This mask adds Gaussians where the ground truth depth is
closer than the rendered depth, and the depth error exceeds
λMDE times the median depth error (MDE). Gaussian Splat-
ting generates artifacts that can potentially cause false positives
collision. To mitigate this issue, we apply a minimum opacity
threshold of αmin = 0.1 to filter out transparent Gaussians.
Additionally, we use a GPU-based occupancy grid with voxel
sizes at least as large as the maximum Gaussian radius. This
enables us to evaluate the occupancy values (ranging from 0
to 1) of neighboring voxels and remove Gaussians located
in free (< 0.3) or uncertain (< 0.7) regions. Gaussians

outside the robot’s reachable workspace are also removed. We
relocate Gaussians to adapt to newly appearing objects using
the mask Madd and RGB-D image. To maintain computational
efficiency, we impose a limit on the maximum number of
Gaussians. If the total Gaussian count is below the threshold,
new Gaussians are added and dead ones repositioned. Once the
limit is reached, only dead Gaussians are replaced, maintaining
a fixed count while optimizing distribution.

To enable obstacle avoidance and interaction, the robot
must identify Gaussians representing itself. Segmenting from
2D images misses internal Gaussians, causing false colli-
sions. Instead of complex learning-based methods, we use an
occupancy grid and the robot’s AABB: voxels intersecting
the AABB are found, followed by a fixed-radius search for
intersecting Gaussians. We use 2-bit encoding to categorize
different entities: objects are 00, the robot is 01. Voxel grids
are updated using atomic OR operations to track which entity
occupies each voxel. As the robot moves quickly, Gaussians
may leave “trails” where they were previously, which aren’t
updated quickly enough by the Gaussian Splatting for a proper
tracking. To address this, we add a removal mask for Gaussians
previously classified as robot that have become objects.

D. SDF and Collision Probability

SDF provides information about whether a point is inside,
outside, or on the surface of an object, enabling more nuanced
robotic interactions. Isotropic Gaussians can define a surface
boundary by their radii ri, naturally producing an SDF [19].
The SDF at a query point x in 3D space is:

SDF(x) = min
i
(∥x− pi∥2 − ri) (6)

Here, pi and ri denote the center and radius of the i-
th Gaussian. This method suffers from discontinuities, non-



differentiability, and poor surface interpolation under sparse
Gaussians. To address these issues, we extend the Gaussian
process distance field (GPDF) [20] from point cloud data to
include radii. We use it as a proxy for SDF and we improve its
numerical stability and computational efficiency by modeling
the occupancy field o(x) as a Gaussian process:

o(x) ∼ GP(0,k(x, p)) (7)

Here, x ∈ R3 is the query point, and p ∈ R3 is the center
of a Gaussian sphere, and the kernel function k(x, p) =
kd(d(x, p)) = exp(−d(x, p)/l) is a Matérn kernel with
interpolation parameter l > 0 where d(x, p) = ∥x − p∥2.
The inferred occupancy ô(x) is computed as:

ô(x) = k(x,P)(K(P,P) + ϵI)−1y > 0 (8)

where P = [p1, p2, . . . , pn]
T are the sphere centers, y =

[kd(−r1),kd(−r2), . . . ,kd(−rn)]
T are the kernel evaluations

at negative radii, ϵ > 0 is a small noise for observation. The
occupancy describes the point’s location relative to the object:

ô(x) < 1 : outside, = 1 : surface, > 1 : inside

Although a Gaussian Process (GP) output may not always be
positive despite positive observations y, ô(x) generally stays
positive. This positivity is guaranteed under an approximation
introduced later. The SDF is defined as:

ŜDF(x) = r(ô(x)) (9)

where r is the inverse function of kd. The gradient of SDF is

∇ŜDF(x) =
∂r

∂ô
∇ô(x)

∇ô(x) = ∇k(x,P)(K(P,P) + ϵI)−1y
(10)

To satisfy the Eikonal equation, the gradient is normalized:

∇ŜDF(x) =
∇ô(x)

∥∇ô(x)∥2
(11)

The interpolated proxy SDF typically underestimates true
surface distance. While sufficient for barrier functions, sphere
marching refines the SDF in 3–5 iterations for higher accuracy
[21]. Alternatively, kernels such as the Gaussian kd(d) =
exp(−d2/(2l2)) yield sharper distance fields via a reverting
function but may cause numerical discontinuities.

1) Numerical stability: GPDF faces numerical instability
from r(x) = −l log(x), which diverges for points far from P
[22]. We mitigate this using the following trick:

M = [m1,m2, . . . ,mn]
T = (K(P,P) + ϵI)−1y

ô(x) = k(x, p1)m1 + k(x, p2)m2 + · · ·+ k(x, pn)mn

ŜDF(x) = −l log(k(x, p1)m1 + · · ·+ k(x, pn)mn)

= d(x, p1)− l log(m1 + · · ·+ kd(d(x, pn)− d(x, p1))mn)
(12)

where d(x, p1) is the minimum distance between x and all
points in P. Although the log argument may not always be
positive since M can contain negative elements, it usually is,
and suitable approximations (discussed later) ensure positivity.

2) Collision probability: The variance of the Gaussian
process provides a measure of collision probability:

var(o(x)) = k(x, x)− k(x,P)(K(P,P) + ϵI)−1k(P, x)
(13)

The collision probability P (o(x) ≥ 1) where o(x) > 0 is:

P (o(x) ≥ 1) =

1− Φ

(
1−ô(x)√
var(o(x))

)
1− Φ

(
0−ô(x)√
var(o(x))

) (14)

Here, Φ represents the cumulative distribution function of the
standard normal distribution. However, when x is far from P,
ô(x) and var(o(x)) approach 0 and 1, respectively, causing
P (o(x) ≥ 1) to have a non-zero probability of approximately
(1− Φ(1))/(1− Φ(0)) ≈ 0.3174. This is because var(o(x))
does not account for the scale of y. To ensure the probability
decreases to near zero as x moves away from P, we divide
the variance by a constant factor (e.g., we use 9).

3) Approximation: To reduce the complexity of matrix
inversion in Gaussian processes, we apply a mass-lumped
matrix approximation [23]. We approximate the kernel matrix
K(P,P) by its row sums, forming a diagonal matrix D(P,P):

K(P,P) ≈ D(P,P)

= diag

[
n∑

i=1

k(p1,pi), . . . ,

n∑
i=1

k(pn,pi)

]T
 (15)

This approximation performs kernel regression on the Gaus-
sian process implicit features F, producing new features F′.

K(P,P)F = y, D(P,P)F′ = y

⇒ F′ = D−1KF =


k(p1,p1)∑n
i=1 k(p1,pi)

· · · k(p1,pn)∑n
i=1 k(p1,pi)

...
. . .

...
k(pn,p1)∑n
i=1 k(pn,pi)

· · · k(pn,pn)∑n
i=1 k(pn,pi)

F

(16)

This reduces model complexity to O(n2) and ensures ô >
0. The diagonal terms approximate kernel density, e.g.,∑n

i=1 k(p1, pi) estimates the density at p1. To simplify further,
we approximate density via a uniform voxel grid: rasterize
P using trilinear interpolation, apply a GPDF-based kernel
convolution, then interpolate back to get densities ρi. This
reduces complexity to linear in both the number of points and
voxels.

E. Collision Avoidance with Reactive Control

We use SDF as a control barrier function for a Quadratic
Programming Inverse Kinematics (QP-IK) controller [24, 25].
This method enables reactive and collision-free control in



dynamic environments. The QP-IK controller is:

min
q̇,ẋ

(ẋref − ẋ)TQ(ẋref − ẋ) + δTxRδx + δTextSδext

s.t. ẋ = J(q)q̇ + δx (Forward kinematics)
− q̇ ≥ −(qmax − q), (Joint upper limit)
q̇ ≥ −(q − qmin), (Joint lower limit)
− q̇max ≤ q̇ ≤ q̇max, (Joint velocity limit)
∇qdext(q)q̇ ≥ −(dext(q)− ϵ) + δext,

(External collision constraint)
∇qdself(q)q̇ ≥ −(dself(q)− ϵ)

(Self collision constraint)

(17)

Here, ẋref ∈ R6 is the desired end-effector velocity, J(q) ∈
R6×7 the Jacobian, δx ∈ R6 and δext ∈ R7 are slack variables,
and Q,R, S ≻ 0 are weights. Joint limits are qmin, qmax, and
q̇max. Collision distances and gradients are dext(q),∇qdext(q)
and dself(q),∇qdself(q). The cost includes tracking error, slack
penalties for kinematics, and soft collision avoidance, with
optional terms for velocity smoothness and home pose bias.
Collisions are modeled using spheres [26], and QP solves at
> 100 Hz using CVXPY [27] with state and Gaussian updates.

IV. EXPERIMENTS & RESULTS

We evaluate our framework on scene reconstruction quality
and collision-free motion generation in unknown environ-
ments, using both simulation [28] and real-world tests with
diverse obstacles. Our experiments use a 7-DOF Franka Emika
Panda robot and Intel RealSense D435 RGB-D cameras.

A. Scene Reconstruction Quality

We evaluate scene reconstruction quality using the DTU
MVS dataset [29]. Since DTU lacks native depth images,
we use depth maps from [30] to synthesize RGB-D data.
We benchmark our method against 3D-GS [4] for scene
reconstruction quality. Both methods are initialized with
10,000 Gaussians and fitted using identical loss functions.
While 3D-GS dynamically increases its count of Gaussians
(50,000–100,000), our method maintain a fixed budget of
Gaussians, making it more suitable for real-time applications.
We chose widely used peak signal-to-noise ratio (PSNR)
metric to validate the scene reconstruction quality. Table I
reports the average Peak Signal-to-Noise Ratio (PSNR). Our
method achieves competitive PSNR. Figure 3 illustrates quali-
tative comparison. Note that while scene reconstruction quality
focuses on the visual fidelity, for robotics, evaluating inter-
action with the environment is essential, especially collision
avoidance for safe and efficient operation.

TABLE I: Quantitative results on the DTU MVS dataset [29].

Method PSNR ↑

3D-GS 23.27
Ours 23.33

(a) Dataset image (b) 3D-GS [4] (c) Ours

Fig. 3: The qualitative comparison of our method with 3D-GS
on the DTU MVS dataset [29].

Fig. 4: Samples of Cubby and Tabletop test environments [28].

B. Simulation Robot Experiments

Reconstruction quality mainly measures fidelity but not its
usefulness for robotics. We tested our framework to examine
the utility of the reconstructed scene for robotic tasks in
two simulation environments [28], Cubby and Tabletop scene.
Our framework was tested in 942 trials on these unknown
environments (Figure 4), given only start/goal configurations
and RGB-D streams. Our framework, combined with a BiRRT
motion planner using the Gaussian Process Distance Field
(GPDF) for collision checking (GPDF > 0 = valid) with
2cm voxels, was benchmarked against 3D-GS [4]. For this
experiment, the reconstruction was performed first, followed
by motion planning on the resulting scene. Success requires
reaching the target pose within 1◦ rotation and 3 cm translation
without collisions. We varied the number of RGB-D cameras
(2–6) for reconstruction.

Table II shows success rates across different settings. Our
method outperforms the baseline, requiring fewer cameras and
showing greater robustness and efficiency. 3D-GS introduces
artifacts causing false collisions, particularly at the start and
end-effector positions, while our approach yields more reliable
representations. Additionally, our method remains faster, sus-
taining approximately 240 Hz for single-view iterations, with
the limited budget of Gaussians.



Fig. 5: Qualitative results on real world experiment featuring an unknown environment with a diverse set of obstacles. The
figure shows a sampling of keyframes (1-6) selected from the robot motion sequence to illustrate the task progression.

TABLE II: Success rates (%) with motion planning across
simulated environments.

Number of Cameras 2 4 6

Tabletop Environment (546 trials)
3D-GS w/ MP (%) 50.59 78.43 33.88
Ours w/ MP (%) 95.28 92.87 98.17

Cubby Environment (174 trials)
3D-GS w/ MP (%) 6.45 1.24 0.00
Ours w/ MP (%) 95.48 87.58 88.51

Merged Cubby Environment (222 trials)
3D-GS w/ MP (%) 8.04 4.19 0.45
Ours w/ MP (%) 93.97 94.42 96.85

Average Across Environments (942 trials)
3D-GS w/ MP (%) 32.83 48.13 19.75
Ours w/ MP (%) 95.01 92.32 96.07

C. Real Robot Experiments

In addition to evaluating our framework in simulation envi-
ronments, we conducted real-world experiments to validate its
effectiveness for reactive control in unknown environment. We
tested our framework with reactive control strategy (QP-IK) in
a pick-and-place task on an environment containing a diverse
set of obstacles (Figure 5). The task of the robot is to transport
the blue cube into the bowl on the right—without collision.
The scene is reconstructed on the fly and used directly by the
controller, unlike the sampling-based motion planners in the
previous experiments. The robot had no prior knowledge of
the obstacles’ locations or shapes. For scene reconstruction,
we employed three Intel RealSense D435 RGB-D cameras
with our framework. In our tests we conducted four trials,
and we configured the system with a maximum of 5,000
Gaussians and set the Gaussian Process interpolation length
scale to 2 cm. Figure 5 illustrates qualitative results with our
framework showing motion execution keyframes for the task.
Despite the environment being unknown—the robot was able

to successfully avoid obstacles and complete the task for all
trials. The success of the approach is highly dependent on the
quality of the scene reconstruction, as it operate under strict
collision constraints.

V. DISCUSSION

While effective, our framework has certain limitations—
namely, hyperparameter tuning and the simplification of Gaus-
sian distributions as ellipsoids, which overlooks their full
probabilistic characteristics. In future work, we aim to com-
pute distances between Gaussians without relying on point-
radius simplifications, thereby preserving richer probabilistic
information and increasing the reconstruction accuracy. We
also plan to explore image-level spatial filtering to simplify
the pipeline and eliminate the need for memory-consuming
voxel grids. Additionally, we will evaluate our framework
in dynamic environments, such as human-robot collaborative
scenarios, to demonstrate its capability to adapt to dynamic
changes in the environment.

VI. CONCLUSION

We have presented a novel unified framework for real-time
Gaussian-Based scene reconstruction and reactive Control for
robotics. Our key contributions include a memory-efficient
Gaussian update strategy, a numerically stable and continuous
SDF formulation based on Gaussian Process Distance Fields
(GPDF), and a reactive controller that can ensure collision-
free reactive motion in unknown environments. Unlike prior
approaches, our method operates directly from RGB-D inputs
and supports both motion planning and reactive control in un-
structured, previously unseen environments. Future work will
focus on improved uncertainty modeling, and evaluation on
dynamic settings such as human-robot collaborative scenarios.
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