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Disentangled Object-Centric Configuration Representation Learning for
Articulated Robot Arms

Daniel Nikovski†

Abstract— The paper proposes a method for learning compact
representations of the configuration (joint positions) of articulated
mechanisms consisting of interconnected rigid bodies, from collected
sequences of keypoint positions observed and tracked in camera
images. The method analyzes the variations in pairwise distances
between keypoints over time to deduce which of the keypoints must
belong to the same rigid body and then computes the relative pose
of all rigid bodies with respect to a reference image representing an
initial or target configuration of the mechanism. By analyzing the
rank of data matrices representing the translational and rotational
components of the relative poses between the rigid bodies over
time, the algorithm infers the order of the kinematic chain of the
mechanism and the type of joints used in it, allowing the construction
of a configuration vector as compact as the true joint positions of
the mechanism.

Index Terms— Learning control, visual servoing, robotics

I. INTRODUCTION

Monitoring and control of mechanisms requires an accurate
representation of their current state that describes the position
and velocity of all moving parts of the mechanism. For articulated
mechanisms, such as robot arms, gantry cranes, etc. that consist
of a number of rigid bodies connected by joints allowing relative
motion between the bodies, the state is commonly expressed as
a vector of the mechanism’s configuration (joint positions or
angles) and velocity (the joints’ linear or angular velocities).
Many articulated mechanisms are equipped with joint encoders
that measure as accurately as possible the joints’ positions and
angles, but other mechanisms do not have such encoders, for cost
or technical reasons, so direct measurements are not possible.
Furthermore, even when encoders are available, they usually
measure the angles of the motors actuating the joints, and inter-
mediate mechanical components, such as belts and gearboxes, can
introduce discrepancies between the joint and motor positions due
to slip or gear backlash. Finally, other rigid bodies such as product
parts manipulated by a robot arm could not possibly have encoders
installed on them, but their configuration still needs to be known
in order to execute a manipulation task. It is thus desirable to
design alternative methods for state estimation that do not rely on
encoders, but measure directly the configuration of a mechanism
of interest.

A very appealing sensor modality for such configuration mea-
surements is computer vision, due to the steadily decreasing
costs of high-performance cameras and their increasing resolution
and frame rates, allowing high-speed monitoring and control.
The field of visual servocontrol (VS) [1] is concerned with
the general problem of using camera images for servocontrol
of mechanisms. Two major types of VS exist: image-based VS
(IBVS) and position-based VS (PBVS). In IBVS, the control
policy is conditioned directly on elements of the camera image,
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and in PBVS, the image is used to estimate explicitly the position
(configuration) of the mechanism from the image, and execute a
control law defined in terms of this configuration.

A major advantage of PBVS is that once the true state (joint po-
sitions and velocities) has been estimated, joint-space controllers
of the mechanism can be used directly. For example, computed-
torque controllers can use knowledge of the inverse dynamics
of an articulated arm, if available, to provide advanced non-
linear control that far outperforms linear controllers. However,
a significant drawback of PBVS is that a state observer must be
designed, which can be very laborious, difficult, and expensive.

In contrast, IBVS methods do not perform explicit state
estimation, thus eliminating the need for state observers, and
work directly with information extracted from the images. This
information is typically in the form of the 2D image coordinates of
various features of the image, such as corners, object centroids,
etc. However, these methods usually make the assumption that
all features of interest can be reliably tracked in every single
image. This assumption is sometimes justified, for example when
the camera is attached to the end tool of a robot arm (eye-in-
hand setting) looking at a scene while the arm is approaching the
goal position. In contrast, this assumption is typically not justified
when the camera is observing the robot from a fixed position (eye-
to-hand setting) and the features belong to the robot’s links, as the
links often occlude each other due to their close proximity and
connectedness. For this reason, most IBVS method would fail in
the eye-to-hand setting due to unreliable feature tracking.

A notable recent advance in IBVS is the emergence of methods
for learning end-to-end visuo-motor policies that condition the
control policy on the entire image, relying on a deep neural net-
work (DNN) to extract the features and internal representations of
the state of the mechanism that are necessary for its control. One
example of such a method is the highly influential Guided Policy
Search (GPS) algorithm [2]. However, the GPS algorithm assumes
knowledge of the true internal state of system in order to compute
a control law conditioned on this low-dimensional internal state
using optimal control methods such as the iLQR algorithm [3],
and after that trains a DNN to map high-dimensional images to
the control outputs computed by the control law. Such knowledge
of the true internal state of the mechanism is not available in the
problem setting we are interested in, so the GPS algorithm and
others of its class are not directly applicable.

Still, the basic idea of computing low-dimensional represen-
tations from images followed by control policies conditioned
on these representations is applicable, and the field of state
representation learning (SRL) has been concerned with devising
efficient algorithms for this purpose [4]. SRL algorithms typically
operate in a self-supervised learning setting, where the system
first collects data during an exploration period under a suitable
exploratory control policy whose purpose is to excite the system



and make it visit the regions of its state space that are important
for control, in line with the way system identification (SI) algo-
rithms work. Some SRL algorithms construct state descriptors by
employing an autoencoder convolutional DNN with a bottleneck
layer, learning to reconstruct the image itself [5]. Other SRL
algorithms learn both the state representation and the system
dynamics jointly, similar to some SI algorithms, resulting in a
nonlinear state-space model [6]. This kind of predictive models
are widely used in model-based reinforcement learning (MBRL),
where the much lower dimensionality of the constructed state
space, compared to the very high dimensionality of the observa-
tion space (all pixels in an image), is a major factor in speeding up
the computation of optimal sequential control policies by means
of reinforcement learning algorithms [7].

Some notable successes with this approach in robotics include
the swing-up of a cart-pole system, a difficult control benchmark
problem even when the true state of the system is known [8],
control of planar mobile robots [9], as well as object manipulation
[5]. However, one difficulty associated with this approach is that
although the learned representations are naturally distributed in
the form of an activation pattern over all neurons in the bottleneck
layer of a DNN, they are not necessarily disentangled (factored)
over the individual moving bodies in the observed scene. This
makes the learned representations impossible to compose and also
affects adversely the sample complexity of learning, because all
possible combinations of the states of all objects must be observed
in the exploratory stage in order to learn a state representation that
is valid everywhere in the state space of the system. This contrasts
with the gradual way humans learn mental representations of the
external world over their entire lifetimes, a few objects at a time
along with their dynamics and affordances.

To address the lack of representation disentaglement associated
with these earlier SRL approaches that were based on autoencoder
DNNs, recent work has focused on object-centered SRL [10].
This approach recognizes the powerful inductive bias of learning
a description of a scene consisting of separate descriptions of
several individual objects that interact loosely with each other.
This kind of object-centric inductive bias is very suitable to the
problem we are considering, as articulated mechanisms indeed
consist of multiple rigid bodies that are constrained to move in
relation to each other only with one (or at most few) degrees of
freedom (DoF).

The Slot Attention for Video (SAVi) method proposed in [10]
uses a number of discrete slots, one per object, in combination
with a transformer DNN, to learn disentangled object-centric rep-
resentations. Similar to other SRL methods, the SAVi architecture
takes as input sequences of images and relies on convolutional
neural networks (CNNs) to extract features necessary for tracking
and representing objects. Learning such features requires addi-
tional amounts of data and is known to be quite sensitive to proper
initialization of the neural network, in particular its convolutional
kernels. (The authors of [10] suggest the slots can be conditionally
initialized based on cues such as the center of mass coordinates
of objects, but this involves some type of pre-segmentation of the
scene into objects.)

This observation raises the question of whether a neural
network, with its associated long training time, high sample
complexity, and less than perfect reliability is needed at all. We
propose to use as input to the SRL algorithm not the raw pixels

of camera images, but the spatial coordinates of a set of more-or-
less reliably identifiable keypoint locations, and learn disentangled
object-centric representations by analyzing the relative motion of
these keypoints over time, as measured in a data set. This approach
is similar to the one usually taken in the field of Structure from
Motion (SfM) estimation and can leverage results from that area.
The method identifies which keypoints must belong to the same
rigid body using statistical tests, estimates the poses of the objects
in the camera frame from the associated keypoints’ coordinates in
the form of rigid body transforms (RBT), and then identifies the
order of the kinematic chain of the mechanism based on singular-
value decomposition (SVD) of the relative RBTs between all
pairs of identified bodies. This results in a compact description of
the configuration of the articulated mechanism equivalent to the
vector of joint positions or angles of the mechanism.

Section II describes the learning problem we are addressing
and Section III explains the proposed algorithm for object-centric
configuration learning. Section IV illustrates the algorithm with
an example application to an articulated robot arm, and Section
V proposes directions for future work and concludes the paper.

II. PROBLEM STATEMENT

We are interested in the problem of constructing a compact
representation of the configuration of an articulated mechanism
consisting of an unknown number of rigid bodies connected in
a kinematic chain with single-DoF joints, from a sequence of
camera images. The size and appearance of the rigid bodies
defining the links of the mechanism are unknown, and neither
is their order in the kinematic chain of the mechanism. The joints
could be either prismatic or revolute. Under these conditions, it
is not not possible to recover the true state of the mechanism
in order to apply PBVS directly. However, if a configuration
representation that is equivalent (has one-to-one mapping) to
the true configuration of the mechanism can be constructed and
estimated from camera data, PBVS methods can be applied to the
control of the mechanism.

We assume that a set P of N distinctive spatial (3D) keypoints
has been tracked over T instances in time producing measure-
ments pik = [xik, yik, zik]

T , i = 1, . . . , N , k = 1, . . . , T . The
matrix of measurements at time k is denoted by Pk = [pik]

T ∈
RN×3, i = 1, . . . , N . One way to estimate the positions of these
points is to use an RGBD (depth) camera to collect a sequence
of T RGBD frames under a persistent excitation control policy
for the target mechanism, and compute distinctive features, such
as corners, in the RGB images [11]. Then, the positions pik of
the features of interest can be computed in the camera’s frame of
reference by using the depth component of the RGBD camera’s
image and the intrinsic parameters of the camera. Note that we
do not assume that all points are visible at all times; instead,
for some time instances, some of the points might be occluded
and thus their positions unknown. In addition, the measurement
of the positions of those points which are visible is subject
to measurement noise, due to the finite size of the camera’s
pixels and finite depth resolution, as well as possible mechanical
disturbances. Furthermore, we assume that the number of points
N is much larger than the number n of rigid bodies in the
mechanism, as it is essential to have at least 3, and hopefully
more, visible points per body in order to compute reliably its
pose in the camera frame.



Given the (possibly sparse) data tensor P = [Pk] ∈ RN×T×3,
k = 1, . . . , T of position data, we want to determine how many
rigid bodies exist in the scene, which of the N points belongs to
which body, what are the poses of all bodies with respect to a
reference pose at all times, which body is connected to which via
a single joint, and what positions these joints have at all instants
in time, relative to a reference joint position. The reference poses
of the bodies could correspond to those the bodies have assumed
at a specified moment in time in the sequence, for example the
initial time instant, corresponding to the first camera image. For
definiteness, the reference positions of the joints can be assumed
to all have a value of zero at that time.

III. CONFIGURATION LEARNING ALGORITHM

A. Association of Points to Rigid Bodies

The first step of the algorithm is to determine how many moving
bodies exist in the scene (including the stationary background)
and to associate each point to exactly one body. The problem, as
defined above, is an instance of the type of problems addressed in
the field of SRL, but it also bears strong similarities to problems
addressed in the field of Structure from Motion (SfM) estimation
[11]. Typically, SfM algorithms work on 2D data, using only the
projections of the tracked points onto the image plane, and aim to
reconstruct the 3D coordinates and the relative motion between
the moving objects and the camera. In our case, we do assume
that we have access to the 3D coordinates, thus simplifying the
problem.

We can use one of the major principles of SfM estimation
formulated as the Rigid Body Assumption (RBA) by Ullman [12]:
”any set of elements undergoing a two dimensional transformation
which has a unique interpretation as a rigid body moving in space
should be interpreted as such a body in motion”. We can adopt the
RBA as the main principle of determining how many bodies are
moving in the scene by testing whether a pair of points maintains
the same distance between each other over time, and cluster the
set of N points into subsets that satisfy the RBA between each
pair of its members.

In order to apply this approach, we need a measure of dissimi-
larity between each pair of points, expressing the degree to which
the Euclidean distance between these two points violates the RBA.
One possible dissimilarity measure is the variance of the distance
Dij between the two points pi and pj . This distance, under the
assumption that measurement noise exists, is a random variable
whose mean d̄ij and sample variance s2ij can be computed for
the cases when both points are observable, as indicated by the
indicator variables oik that equal 1 if point i is observable at time
k and 0 if not:

dijk =

{
∥pik − pjk∥ if (oik = 1) ∧ (ojk = 1)

undefined otherwise
(1)

Tij =

T∑
k=1

oikojk d̄ij =
1

Tij

T∑
k=1
oik=1
ojk=1

dijk (2)

s2ij =
1

Tij − 1

T∑
k=1
oik=1
ojk=1

(dijk − d̄ij)
2 (3)

In order to estimate the variances s2ij , the distance between the
two points must be measured at least twice, so if the condition
∀j, Tij ≥ 2 is not satisfied for a point i, it is excluded from the
set of points.

The sample variance s2ij is one possible dissimilarity measure,
but its scaling might not be very suitable for use by clustering
algorithms. When two points do belong to the same moving
object, the variance of the measured distance between them would
be on the order of the measurement noise of the camera. When
they do not belong to the same object, the variance would vary
from slightly above this noise value (for cases when the two points
do not move much to begin with), to much more than the noise.
This creates a possibility for confusion by clustering algorithms,
as they generally seek to minimize the total dissimilarity inside
clusters and might erroneously consider points whose distance’s
variance is slightly above noise to belong to the same object.

A better dissimilarity measure might be derived if we cast
the problem as one of statistical testing. Indeed, the objective
here is to test the statistical hypothesis that the distance between
two points (a random variable) is not constant, i.e., its variance
is significantly higher than can be explained by the variance
of the measurement noise alone. A suitable test for difference
in variances is the F-test. To perform it, we need to know the
variance of the measurement noise σ2

noise. One way to estimate
is from the specifications of the camera (viewing angle and
resolution of RGB and depth images). Another way is to measure
it empirically by tracking a set of points known to belong to the
same object over multiple frames while the object is changing its
pose, and computing the variance of the distances between visible
points. It should be noted that the measurement noise will vary
somewhat depending on the coordinates of the point, as the angle
subtended by a single pixel changes depending on how far the
pixel is from the optical axis of the camera, but for the purposes
of statistical testing, a constant aggregate estimate of σ2

noise is
generally sufficient.

The F-test proceeds by formulating a null hypothesis H0 that
the variance σ2

ij = σ2
noise and an alternative hypothesis HA that

σ2
ij > σ2

noise. Here, we are computing a one-sided F-test, as the
true variance σ2

ij can only be equal to or larger than the true
noise variance σ2

noise (the latter is the Cramér-Rao bound to the
former), so there is no physical possibility it can be lower. (For the
respective measured values, we can sometimes have s2ij < σ2

noise,
but when this happens, it clearly means the distance is constant,
and we do not need further tests.)

The F-statistic is then computed as Fij = s2ij/σ
2
noise. It follows

an F-distribution with degrees of freedom (Tij−1, Tij−1). The p-
value associated with the measured variance s2ij can be computed
as p = Pr(F > Fij) = 1 − CDF (Fij), where CDF (·) is the
cumulative distribution function of the F distribution. The p-value
signifies the probability that the observed F-statistic could be that
high if the null hypothesis H0 (the points belong to the same
object) were true. A low value (below a chosen threshold) rejects
the null hypothesis and suggests that the alternative hypothesis
HA (in this case, the points do not belong to the same object)
is true at the chosen confidence level. For our purposes, though,
we do not need to choose a confidence level – instead, we can
use the complement of the p-value qij = 1− p = CDF (Fij) as
the dissimilarity measure between points i and j for the purposes
of clustering the points into separate objects. This dissimilarity



measure falls in the general range between around 0.5 (when
the measured variance s2ij is approximately equal to the noise
variance, so Fij ≈ 1), up to 1 (when Fij >> 1). This more
uniform scale makes it much easier to determine which points
belong to the same object by means of clustering.

The clustering itself can be performed by means of any
algorithm that takes as input a matrix of dissimilarity measures,
such as hierarchical clustering, DBSCAN, spectral clustering, etc.
Let Pl, l = 1, n̂0 be the subsets that the points in P have been
clustered into, and Nl = |Pl| be the number of points in cluster
l. If Nl < 3, the corresponding subset is discarded, as it cannot
be used for estimating the pose of the object it is associated with.
The number n̂ of remaining clusters is an estimate of the unknown
true number n of rigid bodies in the scene, including the static
background.

B. Construction of a Configuration Descriptor

Once the points have been assigned to clusters of size at least
3, we can compute the relative poses of all identified bodies with
respect to a reference pose implied by the measured position of
the points at a given time. Let these positions be denoted by
pi0 = [xi0, yi0, zi0]

T , and let P0 = [pi0]
T ∈ RN×3, i = 1, . . . , N .

A convenient setting could be to choose the measurements for the
first frame in the sequence, i.e. P0 = P1, but any other frame can
be used, too.

Let now Pl0 = [p0j ]
Nl
j=1 = [[x0j , y0j , z0j ]

T ]Nl
j=1 denote the

matrix of reference measurements for cluster l, and Plk =
[pik]

nl
i=1 = [[xik, yik, zik]

T ]nl
i=1 denote the matrix of measurements

for the same points at time instance k, stacked horizontally with
one column per point. If Nl ≥ 3 and the points are in general
position (not coplanar), we can estimate the RBT that maps the
points in Pl0 to those in Plk optimally in least-square error sense:
pik ≈ Rlkpi0+tlk, by means of Procrustes superimposition using
Kabsch-Umeyama’s algorithm [13]. Here, Rlk is a 3× 3 rotation
matrix, and tlk is a 3 × 1 translation vector. The method first
computes the centroids cl0 and clk of both sets of points and
translates the points so their centroids are at the origin: P̄l0 =
Pl0 − cl0 and P̄lk = Plk − clk. It then computes the covariance
matrix of the centered measurement matrices as H = P̄T

l0P̄lk,
computes its SVD H = USV T , and recovers the optimal rotation
matrix Rlk = V UT . Finally, the translation vector is recovered
as tlk = clk −Rlkcl0.

After repeating the Procrustes superimposition procedure for
each cluster/body, we obtain a set of n̂ RBTs that completely
define the configuration of the mechanism. This set is thus a
valid constructed configuration descriptor that is of much lower
dimensionality than that of the original RGBD images or key-
points it was extracted from, so it can be used for monitoring and
control of the mechanism, in principle. However, it is far from
minimal. Each of the RBTs represents the 6-DoF relative pose of a
body with respect to its reference configuration, with 3 rotational
and 3 translational DoF. Thus, the entire configuration descriptor
will have 6n̂ elements. However, if the mechanism is an open
kinematic chain (for example, a robot arm), its configuration is
defined only by n̂ joint positions, i.e., 6 times more compact.

It is possible to further analyze the obtained RBTs of the
identified rigid bodies in order to determine the kinematic struc-
ture of the mechanism and devise a more compact configuration
descriptor. To this end, we can recognize that when two bodies
are next to each other in the kinematic chain and are connected

by a single-DoF joint, their relative RBT will have only a single
DoF, too (either translational or rotational). Recall that the RBTs
computed so far are expressed relative to a reference pose implied
by the set of points Pl0, all expressed in the inertial camera frame.
The relative RBT between two objects l and m at time instant k
can be expressed as the pose lRmk of object m in the coordinate
frame attached to object l. Thus, the relative rotation (orientation)
would satisfy Rmk = Rlk

lRmk, where leading superscripts denote
the frame the rotation is expressed in, and rotations without
such superscripts are the previously computed rotations with
respect to the reference orientation in the camera frame. Then, the
relative rotation can be obtained as lRmk = RT

lkRmk. Similarly,
the translation component (relative position) can be obtained as
ltmk = RT

lk(tmk − tlk).
Note that these relative positions and poses are momentary

and apply to a specific time instant k. How many degrees of
freedom exist between the two bodies can be inferred by analyzing
what happens to the relative pose over time. Trivially, if the
relative position or orientation remains constant (within a testing
tolerance), there are zero translational or rotational DoF between
the two bodies. For most pairs of bodies, though, this will not be
the case, and their relative pose will undergo changes over time.

Inferring the number of DoF in the translational component
can be done by analyzing the rank of the 3 × T matrix Tlm =
[ltm1

ltm2 . . . ltmT ]. If body m is undergoing only translational
movement with respect to body l, each relative translation ltmk

should be along the constant axis of the same prismatic joint and
thus should be a scalar multiple of all other translations. That
is, all translations should lie on the same line (one-dimensional
subspace) in R3, equivalent to rank(Tlm) = 1. This condition can
be detected easily by performing SVD on Tlm.

Note that the condition rank(Tmk) = 1 will also be true if the
relative positions are constant (zero translational DoF between the
two bodies), but not zero. For this reason, it is important to detect
this condition beforehand, to avoid confusion with the case when
an actual translation DoF does exist.

Discovering a single rotational DoF is more complicated, for
two reasons. The first is that the representation of a relative
orientation as a rotation matrix R does not lend itself naturally
to a data matrix whose rank can reveal the existing DoF, and the
second is that even when there is only a single rotational DoF, the
translational component of the identifed RBT will generally not
be zero. To illustrate the first reason, if we unfold the 9 entries of
R and stack them in a matrix, this will not result in any special
structure of the matrix when the rotations are the result of a single
DoF. This is due to the fact that rotations, unlike translations, are
not members of the 3D Euclidean space R3, but of the special
orthogonal group SO(3). It does not have the topology of an
Euclidean space, but is a curved manifold embedded in R3×3, so
linear principal component analysis on it is not informative.

However, there is still a way to recover low-dimensional struc-
ture in the set of estimated relative orientations if we represent
them differently. What has Euclidean topology is the tangent space
of the rotation R, expressed as its logarithm map: log(R) = θω̂ ∈
so(3), where θ is the angle of rotation and ω̂ is a skew-symmetric
matrix whose elements are the coordinates of the unit vector ω
corresponding to the axis of rotation. The Lie algebra so(3) is
a vector space and as long as the axis of rotation remains the
same, its logarithm moves along a straight line. We can use this



property to perform PCA in that space. Although, instead of using
the skew-symmetric matrix ω̂, we will use directly the rotation
axis ω, representing the rotation as the product r = θω. This is
also known as the axis-angle representation of a rotation.

Once the rotation matrices are transformed in this representa-
tion, analysis proceeds analogously to the translation case. The
axis-angle representations lrmk of the relative rotations lRmk are
placed in the 3×T matrix Rlm = [lrm1

lrm2 . . . lrmT ]. If body
m is undergoing only rotational movement with respect to body
l, each relative rotation lrmk should be along the constant axis of
the same revolute joint and thus should be a scalar multiple of all
other rotations. That is, all rotations should lie on the same line
(one-dimensional subspace) in R3, equivalent to rank(Rlm) = 1.
This condition can again be detected easily by performing SVD
on Rlm.

However, as noted above, even when there is only a single
rotational DoF between a pair of bodies and no translational DoFs,
the computed sequences of RBTs will generally have a non-zero
translational part ltmk, too. This is due to the fact that the body
the keypoints belong to does not rotate around the centroid of
these keypoints, but around some other pivot point. This creates
the possibility of identifying one or more false translational DoFs
even when there are none.

Fortunately, this condition can be ruled out by computing the
effective center of rotation for all time steps and testing whether
it remains the same, as it should, if there is only one rotational
DoF with a constant center and axis of rotation. Recall that
we estimated the rotation Rlk and translation tlk that map any
reference point pi0, i = 1, . . . , Nl that we determined belongs
to body l to its position pik at time k, both measured in a
common frame (for example, the world frame), such that pik ≈
Rlkpi0 + tlk. Also, for any point lpi expressed in frame l, its
position (constant over time in l) can be expressed in the world
frame as

pik = R′
lk

lpi + t′lk, (4)

where R′
lk is the rotation matrix expressing the rotation of body

l in the world frame and t′lk is the center of rotation of this joint.
As we do not have access to measurements of the joint angle, we
can set its value for the reference time to be such that R′

l0 = I3.
Then, for that moment, we will have

pi0 = I3
lpi + t′l0. (5)

Suppose now that this motion was due to pure rotation of the
frame attached to body l. This means that the rotation matrix
R′

lk changes over time, but the center of rotation remains the
same: t′l0 = t′lk, k = 1, . . . , T . Using this and (5), we express the
unknown position of point i in the frame of body l as lpi = pi0−
t′lk and substitute in (4), yielding pik = R′

lkpi0+(R′
lk−I3)t

′
lk. By

comparing the terms in the approximate equation pik ≈ Rlkpi0+
tlk that relates the same measurements pik and pi0 in the reference
frame, we can identify that R′

lk ≈ Rlk and tlk ≈ (R′
lk − I3)t

′
lk.

That means that the rotational matrix Rlk we estimated by the
Kabsch-Umeyama method is indeed the best possible estimate
of R′

lk. However, tlk and t′lk are not equal, but only indirectly
related. We can still estimate the center of rotation by solving the
equation tlk = At′lk, A = R′

lk − I3 for t′lk, when R′
lk ̸= I3.

However, even when R′
lk ̸= I3, we have rank(A) = 2, because

a rotation matrix in odd dimensions always has one eigenvalue

Fig. 1: A 2-DoF arm on a base with keypoints tracked by MuJoCo
(shown with red dots), simulated for 100 steps.

equal to 1, causing A to have at least one zero eigenvalue. We
can still solve the equation as t̂′lk = A+tlk, using the Moore-
Penrose pseudoinverse A+. Note that any rotation center of the
form t̂′lk+λkωl, where ωl is the axis of rotation, is also a solution
to the equation, reflecting the physical reality that any point on
the axis of rotation is a valid rotation center. However, as long as
the axis of rotation ωl remains constant in the reference frame (as
it will for a single rotational DoF for body l), all estimates t̂′lk will
lie on the same line in 3D vector space. Thus, this condition can
be detected by analyzing the dimensionality of estimates t̂′lk over
time. Recognizing that this line does not necessarily go through
the origin, we form the data matrix T̂ ′

lm = [lt̂′m1 − τ lt̂′m2 −
τ . . . lt̂′mT − τ ] of the directions lt̂′mk − τ of the rotation
center estimates, expressed in reference frame l, with respect to
one of these estimates τ = lt̂′ak for some arbitrary a, 1 ≤ a ≤ T .

The SVD of the matrices Tlm, Rlm, and T̂ ′
lm is performed for

all l = 0, . . . , n̂, m = 0, . . . , n̂, where the frame of reference 0
is the camera frame. Let the symmetric matrix F with entries
flm contain the discovered number of relative DoFs between
all pairs of bodies. We can discover the order of the kinematic
chain of the mechanism by analyzing these entries, as follows.
If f0l = 0 for some l, then body l is stationary and belongs to
the background. If f0l1 = 1 for some l1, then body l1 is the
first link in the kinematic chain. Then, if fl1l2 = 1 for some l2,
then body l2 is the second link in the kinematic chain. Analysis
proceeds analogously until the entire kinematic chain is identified
as the sequence [l1, l2. . . . , ln̂]. A variant of this procedure can be
applied to recover a kinematic tree, too.

IV. EMPIRICAL EVALUATION

We performed an empirical evaluation of the proposed algo-
rithm using a robot arm with two revolute joints simulated in the
physics engine MuJoCo [14] (Fig. 1). In order to evaluate the
performance of the algorithm independently of the performance
of the tracker that would measure feature points and spatial
locations, we retrieved directly from the simulator the locations
of 23 keypoints (shown as red dots) attached to the corners of
three rigid bodies in the scene (the base and two links), and used
MuJoCo’s RGBD rendering capabilities to determine which of
them are visible by the camera at a given time. Constant torques



Fig. 2: Visibility matrix of feature keypoints over time (yellow if
visible, dark brown if not).

were applied to the arm’s joints over a sequence of T = 100
control steps at control rate of 30 Hz, making the links sweep
approximately one full rotation. The resulting visibility matrix of
the keypoints over time is shown in Fig. 2.

The rigid body identification step proceeded with analyzing the
pairwise distances between all pairs of keypoints. Fig. 3 shows
the standard deviations of the distances and the q-values from
the F-test, after adding measurement noise of 1 mm. The results
suggest that the F-test is a more reliable dissimilarity measure.

Fig. 3: Standard deviations of all pairwise distances (left) and
their associated q-values (right).

During the configuration construction step, the ranks of the
matrices Tlm and Rlm were computed for l = 0, 1, 2 and
m = l + 1, . . . , 3 and are shown in Table I. Because neither
translational nor rotational DoFs were found between body 1 (the
base) and the world frame (0), it can be concluded that the base is
stationary. One rotational DoF was discovered between bodies 1
and 2, concluding that body 2 (the first link) rotates with respect
to the base. The two translational DoF of the second link (body
2) with respect to the world and base frames is due to the fact
that it rotates about the end of the first link, which sweeps an
arc in the plane, equivalent to 2D translation. This confirms that
the second link is not directly connected by a joint to either the
world frame or the base. However, once the DoFs of the second
link are computed from the RBT with respect to the frame of
the first link, the single rotational DoF discovered identifies the
existence of a revolute joint between the first and second link.

V. CONCLUSION AND FUTURE WORK

A method was proposed for learning compact representations
of the configuration of articulated mechanisms from collected
sequences of keypoint positions observed and tracked in camera
images. The method analyzes the variations in pairwise distances
between keypoints over time to deduce via statistical testing which
of the keypoints satisfy the RBA and must belong to the same
rigid body. It then computes the relative poses of all rigid bodies
with respect to a reference image and by analyzing the rank of data

F1 F2 F3

F0 - - - 2.9, 1.5 18.9 1.2 4.4, 3.1 19.6 10.2, 2.0, 0.4

F1 2.9, 1.5 18.9 1.3 3.2, 2.8 19.6 10.1, 2.0, 0.4

F2 6.0, 0.4 8.9 1.1

TABLE I: Non-zero singular values of transform matrices between
pairs of body frames. Frame F0 is the world frame and frames Fl,
l = 1, 2, 3 are the frames attached to each of the three discovered
rigid bodies. Each pair shows singular values for the translational,
rotational, and center-of-rotation estimates for the relative RBTs.

matrices representing the translational and rotational components
of these relative poses over time, the algorithm infers the order
of the kinematic chain of the mechanism and the type of joints
used in it. This allows the construction of a configuration vector
as compact as the true joint angles and positions, essentially
creating a joint angle/position observer without any knowledge
of the mechanism’s kinematics or appearance.

In future work, we plan to use this observer for monitoring and
control of robots and other mechanisms. We plan to investigate
how its performance will be affected by noise and tracking errors
of keypoints. Although the algorithm was described in terms of
using 3D keypoint positions, it might also be possible to leverage
SfM algorithms to extend it to operate on planar images collected
by one or more regular RGB cameras, too.
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