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Abstract— Inverse dynamics models are crucial for robotic
control, but traditional physics-based models require precise
system parameters that can be difficult to obtain. While data-
driven black-box models offer a valid alternative, they usually
lack physical plausibility, limiting their use with standard
control methods. This paper presents a method for black-box
inverse dynamics identification using Gaussian Processes Re-
gression (GPR) that promotes physical consistency, by enforcing
the positive definiteness of the inertia matrix. In particular, we
unveil how to estimate the inertia matrix elements from black-
box models, and we integrate positivity constraints into the
empirical risk minimization problem. Experimental validation
demonstrates that our approach significantly improves physical
consistency with minimal loss in estimation accuracy, outper-
forming unconstrained models that may yield non-physical
behaviors and consequently poor control performances.

I. INTRODUCTION

Deriving accurate inverse dynamics models is a crucial
but challenging task in robotics. Traditionally, these models
are built from first-order principles of physics, with unknown
parameters estimated using system identification techniques.
While effective, this approach relies on precise knowledge
of system parameters and dynamics, which is often difficult
to obtain in practice. To overcome this limitation, learning
inverse dynamics models directly from data, in a black-box
fashion, represents a viable alternative. Several black-box
solutions have been proposed in recent years, mostly based
on Neural Networks (NN) [1]–[3] and Gaussian Process
Regression (GPR) [4]–[7].

Ensuring physical consistency in data-driven inverse dy-
namics models is crucial. Properties such as energy con-
servation and symmetries originate from first principles of
physics. The positive definiteness of the inertia matrix is
particularly essential in several tasks, for example when
deriving the forward dynamics from the inverse [8]. Such
property is equally important for control applications, as
traditional strategies like feedback linearization [9] require it
for accurate and robust performance; non-positive definite-
ness can lead to divergent behaviors. However, guaranteeing
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these properties when learning from limited and noisy data
is challenging. This difficulty exists even in classical inverse
dynamics identification approaches based on first principles;
for instance, see solutions proposed in [10] to learn feasible
parameters.

In the context of black-box estimators, the proposed
solutions try to improve physics consistency by enforcing
particular model structures. For example, in [11] the authors
propose a novel NN structure that resembles the inverse
dynamics equations. To impose the positivity of the inertia
matrix, they parametrize its Cholesky decomposition as a NN
and they add a small constant to its diagonal.

The inverse dynamics equations’ structure has also in-
spired several GPR solutions [12]–[16]. In particular, in [16],
the authors define a GP prior on the potential energy and on
the elements of the inertia matrix. As a result, they provide
probabilistic guarantees on the inertia positivity, at the price
of a potentially high number of parameters to train, which
could compromise the model accuracy, especially in high
dimensional settings with limited data availability.

In this paper, we propose a novel constrained learning
strategy to promote the positivity of the inertia matrix
in black-box inverse dynamics identification using GPR.
Recognizing that the GPR solution arises from minimizing
a regularized objective function, we modify the standard
optimization problem — which typically focuses solely on
minimizing the empirical risk — by incorporating constraints
that enforce the positive definiteness of the inertia matrix.

Our contribution is threefold. First, we provide a method
to unveil how to estimate the inertia matrix from black-box
GPR models of the inverse dynamics, showing that these
estimates can be written as a linear combination of the GPR
posterior coefficients. Second, we modify the standard empir-
ical risk minimization problem by incorporating constraints
that enforce the positive definiteness of the inertia matrix.
Third, we demonstrate the advantage of the proposed method
both in terms of estimation and control on a 7 degrees-of-
freedom (DOF) manipulator.

Experimental results show that the addition of the con-
straints is an effective solution to promote the positivity of
the inertia matrix both on training and test trajectories, at the
price of a minimal estimation accuracy loss. Moreover, we
show that the unconstrained model, despite higher estimation
accuracy, leads to unstable control due to non-positive inertia
matrix estimates. In contrast, the proposed model guarantees
precise and accurate tracking performance.



II. BACKGROUND

This section reviews background notions on the inverse
dynamics model and its identification via GPR.

A. Inverse dynamics

Consider an n-degrees of freedom mechanical systems,
and let qt = [q1t . . . q

n
t ]

T ∈ Rn be its generalized coordinates
at time t. Accordingly, q̇t and q̈t are, respectively, the veloc-
ity and acceleration vector at time t, while τt is the torque
vector; in the following, we will point out time-dependency
only when necessary. Under rigid body assumptions, the
dynamics equations of a mechanical system are described
by the following matrix equation

M(q)q̈ + c(q, q̇) + g(q) + ε = τ , (1)

where M(q) is the inertia matrix, c(q, q̇) and g(q) account
for the contributions of fictitious forces and gravity, respec-
tively, and ε is the torque due to friction and unknown
dynamical effects. We refer the interested reader to [17] for
a complete and detailed description and derivation of (1).

The inverse dynamics identification problem aims at learn-
ing from data a function that maps x = [qT q̇T q̈T ]T in the
correspondent τ . Importantly, the terms in (1) are subject to
constraints necessary to guarantee global properties of the
physical system, such as the positivity of the kinetic energy
or energy conservation. In particular, the inertia matrix
M(q) must be positive definite, namely M(q) > 0, that
is M(q) = M(q)T with all positive eigenvalues. Deriving
models that estimate inertia matrices M̂(q) > 0 is crucial for
control applications: non-symmetric or non-positive M̂(q)
could compromise the stability of traditional control strategy,
such as feedback linearization [17]. Indeed, as shown in our
experiments, accurate black-box inverse dynamics estimators
combined with traditional control strategies can lead to
unstable controllers if M̂(q) < 0.

B. GPR for inverse dynamics identification

Several solutions proposed for inverse dynamics identi-
fication rely on GPR. In these approaches, (1) is modeled
through an unknown function f : R3n → Rn that takes
as input x = (q, q̇, q̈) and returns the correspondent τ .
The function is learned from an input-output dataset D =
{X,Y }, where X = {x1, . . . ,xN}, while the output Y =
{y1, . . . ,yN} collects the τ1, . . . , τN measures.

GPR assumes the following probabilistic model

yi = f(xi) + ei (2)

where ei is a zero-mean Gaussian noise with variance Σei ∈
Rn × Rn. We consider the measurement noise independent
and identically distributed, which is a reasonable choice in
the inverse dynamics setup; this means that Σei = σ2

eIn,
where In is the n-dimensional identity matrix. Thus, by
concatenating (2) applied to all the data in D, we get

y =

y1

...
yN

 =

 f(x1)
...

f(xN )

+

e1
...

eN

 = f(X) + e, (3)

where noises e1, . . . , eN are Gaussians independent and
identically distributed, with zero mean and variance Σe =
σ2
eInN .
The function f is defined a prior as a GP, namely, f ∼

GP (m(x), k(x,x′)), where m(·) : R3n → Rn is the prior
mean and k(·, ·) : R3n×R3n → Rn×n is the kernel function.
In GPR, the kernel determines the GP covariance, so that
Cov[f(xp), f(xq)] = k(xp,xq). In the following, we will
assume m(·) = 0, which is a common choice in the black-
box scenario, where no strong prior knowledge of the system
dynamics is available.

Under the Gaussian assumption, the posterior distribution
of f given D in a general input location x is still a Gaussian
distribution, with mean and variance given by

E[f(x)|D] = KxX(KXX +Σe)
−1y, (4a)

Cov[f(x)|D] = k(x,x)−KxX(KXX +Σe)
−1KXx,

(4b)

where matrix KxX ∈ Rn×nN is

KxX = KT
Xx =

[
k(x,x1), . . . , k(x,xN )

]
, (5)

and KXX ∈ RnN×nN is the block matrix

KXX =

k(x1,x1) . . . k(x1,xN )
...

. . .
...

k(xN ,x1) . . . k(xN ,xN )

 . (6)

See [4] for a detailed derivation of formulas in (4). Since
the posterior is Gaussian distributed, the posterior mean (4a)
corresponds to the Maximum a Posteriori Estimate of f , and
is used as an estimator of the inverse dynamics, while the
posterior variance (4b) measures the estimation confidence.

The GP estimate in (4a) can be rewritten as

E[f(x)|D] = KxXα∗ := f̂(x) (7)

α∗ := (KXX +Σe)
−1y (8)

where α∗ are denominated as posterior coefficients. For con-
venience, we introduced the multi-output GPR framework.
However, it is worth mentioning that several solutions rely on
single-output GPs to estimate the inverse dynamics, namely,
f is learned using n independent GPs, one for each output.
This setup is included in the GPR formulation introduced so
far by defining the kernel function as

k(xp,xq) = diag
(
k1(xp,xp) . . . k

n(xp,xq)
)
, (9)

where each ki(xp,xq) : R3n → R is a distinct single-output
kernel.

C. Kernel selection for inverse dynamics models

Kernel selection plays an important role in GPR for inverse
dynamics identification. In the case of the single-output
framework, several options are available. A common choice
is the Radial Basis Function (RBF) kernel, which defines the
covariance between samples based on the distance between
their input locations. More formally

kRBF (x,x
′) = λe−∥x−x′∥2

Σ−1 , (10)



where λ and Σ are the kernel hyperparameters.
The direct definition of multi-output kernels is challenging

due to the complexity of explicitly specifying also the
correlation between the different output dimensions. Typ-
ically, multi-output kernels, also named multi-task GP in
the literature, are derived as linear combinations of standard
scalar kernels. See, for instance, [18]. Recently, several
solutions proposed to derive a multi-output kernel for inverse
dynamics identification by exploiting Lagrange’s equations,
thus embedding in the GP model physical properties, with
potential benefits as concerns consistency and data-efficiency.
In the remainder of this section, we briefly review the
Lagrangian Inspired Polynomial (LIP) kernel [15], which we
will use in our experiments.

Instead of directly modeling joint torques, the LIP kernel
defines a prior on the kinetic and potential energies of the
system. Let T(q, q̇) and V(q) be, respectively, the kinetic
and potential energy of a n-DOF system of the form (1).
T(q, q̇) and V(q) are assumed to be two independent
zero-mean GPs with covariances determined by the kernel
functions kT(x,x′) and kV(x,x′), that is

T ∼ GP (0, kT(x,x′)), (11a)

V ∼ GP (0, kV(x,x′)). (11b)

where x = (q, q̇, q̈) as in the previous Section. The GP prior
on T and V cannot be used directly in GPR to compute
posterior distributions since kinetic and potential energies
are not measured. However, starting from the prior on the
two energies, a GP prior for the torques can be computed
by relying on Lagrangian mechanics. Lagrangian mechanics
states that the inverse dynamics equations in (1) (with ε = 0),
also named Lagrange’s equations, are the solution of a set
of differential equations of the Lagrangian function L =
T(q, q̇)−V(q) [17]. The i-th differential equation of (1) is

dL

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τ i, (12)

where qi, q̇i, and τ i denotes, respectively, the i-th component
of q, q̇, and τ . By applying the chain rule, equation (12) can
be rewritten as

GiL =

n∑
j=1

(
∂2L

∂q̇i∂q̇j
q̈j +

∂2L

∂q̇i∂qj
q̇j
)
− ∂L

∂qi
= τ i, (13)

where we also introduced the linear operator Gi, that maps
L in the left-hand side of (13). In view of the definition of
Gi, the inverse dynamics in (1) can be written as

τ = GL = [G1L . . . GnL]T . (14)

where the above equality defines the linear operator G

mapping L into τ .
Notice that, in such a framework, L is a GP, since T and

V are two independent GPs. The sum of two independent
GPs is indeed a GP itself, with the kernel being the sum of
the kernels [4], namely,

L ∼ GP (0, kL(x,x′)), (15a)

kL(x,x′) = kT(x,x′) + kV(x,x′). (15b)

Equation (14) shows that the inverse dynamics map is
the result of the application of the linear operator G to the
Lagrangian L, that, in the LIP framework, is modeled as
the GP defined in (15a) and (15b). It turns out that, under
mild assumptions satisfied in this framework, linear transfor-
mations of GPs are still GPs, with mean and covariance that
can be derived by applying the linear operator to the starting
mean and covariance, see [19]. As a consequence, within the
LIP framework, the inverse dynamics is itself a zero mean
GP, with covariance function given by

kτ (x,x′) =

G1G
′
1k

L(x,x′) . . . G1G
′
nk

L(x,x′)
...

. . .
...

GnG
′
1k

L(x,x′) . . . GnG
′
nk

L(x,x′)

 ,

(16)
where G′

j is the same operator as Gj but applied to kL(x,x′)
as function of x′. In details, the notation GiG

′
jk

L(x,x′)
means that G′

j is first applied to kL(x,x′) assuming x con-
stant and then Gi is applied to the obtained result assuming
x′ constant.

Regarding the choice of the kernels kT(x,x′) and
kV(x,x′), the LIP kernel considers custom polynomial
kernels, specifically designed to induce a limited set of basis
functions that generate the inverse dynamics equations. Due
to space limitations, we refer the interested reader to [15]
for a deeper and more detailed derivation of the LIP kernel.

It is worth mentioning that, in the literature, there are ap-
proaches similar to the LIP. These approaches consider more
general kernels, such as the RBF, see for example [14], [16].
However, thanks to the combination of Lagrange’s equation
embedding and the selection of tailored basis functions, the
LIP kernel showed to be far more accurate than all the
state-of-the-art black-box alternatives presented so far, with
performance comparable to first-order principles models also
in high-dimensional scenarios with limited data availability.

III. METHOD

This Section presents the constrained learning method we
propose to promote the positivity of the inertia matrix. First,
in Section III-A, we present possible ways of estimating
the inertia matrix as a function of the posterior coefficients.
Then, in Section III-B we describe the constrained optimiza-
tion problem we propose.

A. Inertia Matrix estimates with black-box models

In the context of black-box data-driven models, the inverse
dynamics is a function τ̂ (·) : R3n → Rn that takes as input
the state x = (q, q̇, q̈) and outputs the torques τ̂ , and it
is learned without considering the structure described by the
Lagrange’s equations in (1). In this section, we describe how
it is possible to unveil the inertia matrix estimate from the
black-box model of the inverse dynamics.

A very general method that can be applied to any black-
box estimator can be derived by inspection from (1). Due to
space limitations, we refer the interested reader to [9].

In the case of multi-output kernels derived with the
Lagrangian approach described at the end of section II-C,



a more elegant method allows us to estimate the inertia
matrix exploiting the properties of linear transformations and
GPs. To describe such a solution, we start by noting that the
element in position ij of the inertia matrix M is

M ij(q) =
∂2T(q, q̇)

∂q̇i∂q̇j
=: GMijT(x), (17)

by definition of the kinetic energy. We refer to [17] for the
derivation of (17). Additionally, we introduced the definition
of the linear operator GMij , that maps the kinetic energy T

to M ij . Notice that, as T is modeled as a zero-mean GP, and
exploiting the properties of GPs under linear operators [19],
also M ij is a GP. In particular, the covariance between M ij

and τ at general input locations x and x′ can be computed
as

Cov
[
M ij(x), τ (x′)

]
= Cov [GMijT(x),GT(x′)]

= GMijGkT(x,x′)

=: kM
ijτ (x,x′),

(18)

where G is defined in (14). This result implies that we can
estimate M ij at any input location x, given measures y of
τ , as

M̂ ij(x) = KMijτ
xX (KXX +Σe)

−1y = KMijτ
xX α∗, (19)

with KMijτ
xX = [kM

ijτ (x,x1), . . . , k
Mijτ (x,xN )].

At this point, some observations are necessary. Firstly,
note that in the latter approach, the symmetry of the inertia
matrix is imposed by design. Specifically, this stems from
the operator GMij being invariant to the swap of the indices
i and j. This is not true for the former approach, which does
not generally guarantee symmetry of the inertia matrix, for
example for the commonly used single-output GP black box
models. Secondly, Estimating M using (??) or (19) gives the
same results when considering Lagrangian kernels. Finally, it
is important to notice that, when τ̂ is estimated using GPR,
both in (??) and (19) the elements of M̂ depends linearly on
the posterior coefficients α.

B. GPR as an Empirical Risk Minimization Problem

In Section II, we pointed out that the posterior mean of
a GP is the Maximum a Posteriori estimator of the inverse
dynamics. Interestingly, the same solution can be obtained
by interpreting GPR as the probabilistic counterpart of re-
gression in the Reproducing Kernel Hilbert Space (RKHS)
induced by the kernel k. We refer the interested reader to
[20] for further details on RKHS, and to [21], [22] for the
connections between regression in RKHS and GPR.

When performing regression in the RKHS framework,
the estimate of f at any input location x is of the form
f̂(x) = KxXα for α ∈ RnN and KxX defined as in
5. The regularized empirical risk is defined as J(α) =
Jfit(α) + λJreg(α), where the fitting term Jfit measures
how well the estimated function approximate the true one on
the training points. The regularization term Jreg(α), instead,
is

Jreg = αTKXXα,

which corresponds to the norm of f̂ in the RKHS. This term
is meant to penalize functions of high complexity, where the
complexity is measured in terms of the norm in the RKHS.

It is trivial to show that, if λ = σ2
e and the standard squared

error empirical risk is assumed, namely

Jfit = (y −KXXα)T (y −KXXα),

then the value of α that minimizes the regularized empirical
risk, that is

α∗ = arg min
α∈RnN

J(α), (20)

corresponds to α∗ = (KXX +Σe)
−1y, which leads exactly

to the posterior mean in (4a).
The unconstrained solution α∗ is optimal in the sense

of (20) but, it can lead to physically inconsistent solutions,
estimating for example non-positive-definite inertia matrices.
To promote the positive definiteness of the inertia matrix, we
propose to modify the problem in (20) by adding positivity
constraints. Let M̂(qr) denote the estimate of the inertia
matrix at the constraint location qr, with r = 1, . . . , Nc. To
make the dependence on α explicit, in the following, we will
denote M̂(qr) as M̂r(α). Then, we redefine (20) as

α∗
c = arg min

α∈RnN

J(α)

subject to M̂r(α) ≻ 0, r = 1, . . . , Nc

(21)

Notice that the constraint optimization problem (21) leaves
complete freedom on the selection of the number and loca-
tion of the constraint points. One could enforce the constraint
on the training inputs, namely Nc = N and qr corresponds
to the training configurations qi. However, this is not the
only possible choice. As an example, constraint points could
be randomly located on regions of the space not covered by
the training set, and the number of points can be increased to
improve the coverage of the regions of interest. Differently
from α∗, α∗

c is not available in close form, and we have to
resort to numerical optimizers to solve (21).

From the implementation point of view, we express the
positivity constraints in terms of the principal minors of M̂ ,
namely we require all its principal minors to be positive.
Denoting with ∆d

r(α) the principal minor of order d of
the matrix M̂r(α), the constrained optimization problem
becomes

α∗
c = arg min

α∈RnN

J(α)

subject to ∆d
r(α) ≻ 0, d = 1, . . . , n

r = 1, . . . , Nc.

(22)

As an alternative, one could consider the eigenvalues of
the estimated inertia matrix. However, we experimentally
verified that employing principal minors leads to superior
performance, both in terms of reduced solving time and
enhanced robustness of the numerical solutions obtained.

Finally, note that using α∗
c in place of α∗ in (7) could

lead to a sub-optimal solution, with a possible loss in model
accuracy. However, our experimental evaluation suggests that
in practice the loss in accuracy is negligible, while the im-
provements in terms of physical consistency are remarkable.



IV. EXPERIMENTS

This section presents the numerical experiments performed
to validate the proposed approach. All the experiments
are performed on a Franka Emika Panda robot, simulated
using Pybullet. We consider three implementations of the
constrained model we propose. All of them are based on the
LIP estimator presented in [15] and reviewed in Section II-
C, and they differ on the constraint number and location.
In particular, the first model enforces the constraints on
the training points, while the second and the third enforce
the constraints respectively on 200 and 400 input points
randomly sampled with uniform distribution in the same
range of the training dataset. We compare the aforementioned
models with the standard LIP and with a single-output model
based on the RBF kernel, which is included as a baseline.

As training data, we collected a random trajectory, ob-
tained by imposing to each joint a reference position defined
as

qi(t) =

Ns∑
l=1

a

ωf l
sin(ωf l t)−

b

ωf l
cos(ωf l t), (23)

with Ns = 50, ωf = 0.02 rad/s, while a and b are sampled
from a uniform distribution ranging in [−c, c], with c chosen
to respect the limits on joint position, velocity, and acceler-
ation. The training trajectory lasts for 50 seconds, sampled
with a frequency of 100 Hz. To reduce the computational
burden, we restrict the resulting dataset of 5000 points by
selecting the 250 most informative ones. Collected data are
used to select the kernels’ hyperparameters through marginal
likelihood optimization [4], as well as to compute KXX in
(22). When implementing the proposed models, we substi-
tute the optimal α∗ with α∗

c obtained solving (22), while
maintaining the same kernel hyperparameters. We solve the
constraint optimization in (22) using ipopt [23], exploiting
the jax library1 for efficient numeric differentiation.

A. Generalization Experiment

In the first set of experiments, we test the prediction
accuracy of the compared models. To this aim, we perform a
Monte Carlo experiment, where we tested the estimators on
50 noisy trajectories obtained as in (23). We downsampled
the test trajectories with a constant rate, to obtain 100
samples each.

The distribution of the torque prediction error is reported
in figure 1 in terms of normalized mean squared error
(nMSE) percentage. First, we note that the LIP model is
far more accurate than the RBF baseline, confirming the
advantages of the multi-output approach in terms of gener-
alization and data efficiency. Interestingly, the performance
of the constrained models is comparable to that of the
unconstrained one on almost all the joints. Furthermore, note
how, as expected, the error slightly increases at the increase
of the number of constraint points.

In turn, the positive-definiteness property of the estimated
inertia matrix drastically improves. In figure 2, we report the

1http://github.com/jax-ml/jax
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Fig. 1. Box plots of the torque nMSE percentage obtained with the
simulations described in Section IV-A.
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Fig. 2. Box plots of the minimum eigenvalue estimated on the trajectories
of the Monte-Carlo experiment described in section IV-A.

distribution of the minimum eigenvalue estimated with the
considered models along the 50 trajectories of the Monte
Carlo experiment. We do not report the results of the RBF
baseline, as it provides non-symmetric and highly inaccurate
estimates. Note that, while the distribution of the LIP models
comprises a non-negligible amount of non-positive inertias,
the constrained models return positive eigenvalues on the
test sets. These benefits will be further explored in the next
Section.

B. Control Experiment

Assume (qd, q̇d, q̈d) represents the reference joint trajec-
tory. Moreover, let e = qd − q represent the tracking error.
The feedback linearization control law is defined as

τ = M(q)a+ c(q, q̇) + g(q) (24)

with a = q̈d + KPe + KDė, where KP and KD are gain
matrices. Assuming perfect knowledge of M , c, and g and
provided that KP and KD are positive definite, the feedback
linearization control law guarantees to asymptotically reach
zero error tracking. In practice, if the uncertainties on M , c,
and g are limited, tracking errors can be compensated for by
increasing the gains KP and KD, assuming the positivity of
M . If M is not positive definite, the control law may become
unstable, and increasing KP and KD will further exacerbate
the instability.

We exploit the considered models to derive the com-
ponents required to implement the feedback linearization
control. Due to its poor accuracy, we do not consider the
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Fig. 3. Box plots of the absolute tracking error obtained with the
simulations described in Section IV-B.

RBF model. As a reference, we include the performance of
the true model.

Regarding the reference to track, we consider 10 trajecto-
ries, each one generated as in the MC test described in the
previous Section. All the control loops run at 100 Hz and
reference trajectories last for 50 seconds.

In figure 3, we report the distribution of the absolute
value of the tracking error, obtained along the 10 reference
trajectories. While the unconstrained LIP models always fail
to track all the reference trajectories due to non-positive-
definite inertia estimates arising, the constrained models
show reliable performance on almost all the considered
trajectories. The model with constraints only on the training
points fails on two trajectories out of ten. We suggest that this
happens when the reference explores positions that are very
different from the training ones, even if they are sampled
from the same distribution. Distributing the constraints uni-
formly in the region of interest, instead, guarantees correct
tracking on all the ten considered trajectories.

V. CONCLUSIONS

We presented a constrained learning approach to promote
positive definiteness of the inertia matrix in black-box inverse
dynamics models based on GPR. By introducing constraints
into the optimization process, our method produces models
that maintain physical consistency, essential for stable control
in robotics. Simulated experiments on a 7 DOF manipulator
validated the effectiveness of our method both in terms
of prediction accuracy and control performance, showing
that constrained models outperform traditional black-box ap-
proaches in providing reliable estimates for standard control
tasks.
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[22] A. Carè, R. Carli, A. Dalla Libera, D. Romeres, and G. Pillonetto,
“Kernel methods and gaussian processes for system identification and
control: A road map on regularized kernel-based learning for control,”
IEEE Control Systems Magazine, vol. 43, no. 5, pp. 69–110, 2023.
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