News & Events

266 News items, Awards, Events or Talks found.



Learn about the MERL Seminar Series.



  •  TALK    [MERL Seminar Series 2023] Dr. Kristina Monakhova presents talk titled Robust and Physics-informed machine learning for low light imaging
    Date & Time: Tuesday, November 28, 2023; 12:00 PM
    Speaker: Kristina Monakhova, MIT and Cornell
    MERL Host: Joshua Rapp
    Research Areas: Computational Sensing, Computer Vision, Machine Learning, Signal Processing
    Abstract
    • Imaging in low light settings is extremely challenging due to low photon counts, both in photography and in microscopy. In photography, imaging under low light, high gain settings often results in highly structured, non-Gaussian sensor noise that’s hard to characterize or denoise. In this talk, we address this by developing a GAN-tuned physics-based noise model to more accurately represent camera noise at the lowest light, and highest gain settings. Using this noise model, we train a video denoiser using synthetic data and demonstrate photorealistic videography at starlight (submillilux levels of illumination) for the first time.

      For multiphoton microscopy, which is a form a scanning microscopy, there’s a trade-off between field of view, phototoxicity, acquisition time, and image quality, often resulting in noisy measurements. While deep learning-based methods have shown compelling denoising performance, can we trust these methods enough for critical scientific and medical applications? In the second part of this talk, I’ll introduce a learned, distribution-free uncertainty quantification technique that can both denoise and predict pixel-wise uncertainty to gauge how much we can trust our denoiser’s performance. Furthermore, we propose to leverage this learned, pixel-wise uncertainty to drive an adaptive acquisition technique that rescans only the most uncertain regions of a sample. With our sample and algorithm-informed adaptive acquisition, we demonstrate a 120X improvement in total scanning time and total light dose for multiphoton microscopy, while successfully recovering fine structures within the sample.
  •  
  •  NEWS    Anoop Cherian gives a podcast interview with AI Business
    Date: September 26, 2023
    Where: Virtual
    MERL Contact: Anoop Cherian
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Brief
    • Anoop Cherian, a Senior Principal Research Scientist in the Computer Vision team at MERL, gave a podcast interview with award-winning journalist, Deborah Yao. Deborah is the editor of AI Business -- a leading content platform for artificial intelligence and its applications in the real world, delivering its readers up-to-the-minute insights into how AI technologies are currently affecting the global economy and society. The podcast was based on the recent research that Anoop and his colleagues did at MERL with his collaborators at MIT; this research attempts to objectively answer the pertinent question: are current deep neural networks smarter than second graders? The podcast discusses shortcomings in the recent artificial general intelligence systems with regard to their capabilities for knowledge abstraction, learning, and generalization, which are brought out by this research.
  •  
  •  TALK    [MERL Seminar Series 2023] Dr. Tanmay Gupta presents talk titled Visual Programming - A compositional approach to building General Purpose Vision Systems
    Date & Time: Tuesday, October 31, 2023; 2:00 PM
    Speaker: Tanmay Gupta, Allen Institute for Artificial Intelligence
    MERL Host: Moitreya Chatterjee
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Abstract
    • Building General Purpose Vision Systems (GPVs) that can perform a huge variety of tasks has been a long-standing goal for the computer vision community. However, end-to-end training of these systems to handle different modalities and tasks has proven to be extremely challenging. In this talk, I will describe a lucrative neuro-symbolic alternative to the common end-to-end learning paradigm called Visual Programming. Visual Programming is a general framework that leverages the code-generation abilities of LLMs, existing neural models, and non-differentiable programs to enable powerful applications. Some of these applications continue to remain elusive for the current generation of end-to-end trained GPVs.
  •  
  •  NEWS    MERL researchers presenting four papers and organizing the VLAR-SMART101 Workshop at ICCV 2023
    Date: October 2, 2023 - October 6, 2023
    Where: Paris/France
    MERL Contacts: Moitreya Chatterjee; Anoop Cherian; Michael J. Jones; Toshiaki Koike-Akino; Suhas Lohit; Tim K. Marks; Pedro Miraldo; Kuan-Chuan Peng; Ye Wang
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Brief
    • MERL researchers are presenting 4 papers and organizing the VLAR-SMART-101 workshop at the ICCV 2023 conference, which will be held in Paris, France October 2-6. ICCV is one of the most prestigious and competitive international conferences in computer vision. Details are provided below.

      1. Conference paper: “Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional Image Synthesis,” by Nithin Gopalakrishnan Nair, Anoop Cherian, Suhas Lohit, Ye Wang, Toshiaki Koike-Akino, Vishal Patel, and Tim K. Marks

      Conditional generative models typically demand large annotated training sets to achieve high-quality synthesis. As a result, there has been significant interest in plug-and-play generation, i.e., using a pre-defined model to guide the generative process. In this paper, we introduce Steered Diffusion, a generalized framework for fine-grained photorealistic zero-shot conditional image generation using a diffusion model trained for unconditional generation. The key idea is to steer the image generation of the diffusion model during inference via designing a loss using a pre-trained inverse model that characterizes the conditional task. Our model shows clear qualitative and quantitative improvements over state-of-the-art diffusion-based plug-and-play models, while adding negligible computational cost.

      2. Conference paper: "BANSAC: A dynamic BAyesian Network for adaptive SAmple Consensus," by Valter Piedade and Pedro Miraldo

      We derive a dynamic Bayesian network that updates individual data points' inlier scores while iterating RANSAC. At each iteration, we apply weighted sampling using the updated scores. Our method works with or without prior data point scorings. In addition, we use the updated inlier/outlier scoring for deriving a new stopping criterion for the RANSAC loop. Our method outperforms the baselines in accuracy while needing less computational time.

      3. Conference paper: "Robust Frame-to-Frame Camera Rotation Estimation in Crowded Scenes," by Fabien Delattre, David Dirnfeld, Phat Nguyen, Stephen Scarano, Michael J. Jones, Pedro Miraldo, and Erik Learned-Miller

      We present a novel approach to estimating camera rotation in crowded, real-world scenes captured using a handheld monocular video camera. Our method uses a novel generalization of the Hough transform on SO3 to efficiently find the camera rotation most compatible with the optical flow. Because the setting is not addressed well by other data sets, we provide a new dataset and benchmark, with high-accuracy and rigorously annotated ground truth on 17 video sequences. Our method is more accurate by almost 40 percent than the next best method.

      4. Workshop paper: "Tensor Factorization for Leveraging Cross-Modal Knowledge in Data-Constrained Infrared Object Detection" by Manish Sharma*, Moitreya Chatterjee*, Kuan-Chuan Peng, Suhas Lohit, and Michael Jones

      While state-of-the-art object detection methods for RGB images have reached some level of maturity, the same is not true for Infrared (IR) images. The primary bottleneck towards bridging this gap is the lack of sufficient labeled training data in the IR images. Towards addressing this issue, we present TensorFact, a novel tensor decomposition method which splits the convolution kernels of a CNN into low-rank factor matrices with fewer parameters. This compressed network is first pre-trained on RGB images and then augmented with only a few parameters. This augmented network is then trained on IR images, while freezing the weights trained on RGB. This prevents it from over-fitting, allowing it to generalize better. Experiments show that our method outperforms state-of-the-art.

      5. “Vision-and-Language Algorithmic Reasoning (VLAR) Workshop and SMART-101 Challenge” by Anoop Cherian,  Kuan-Chuan Peng, Suhas Lohit, Tim K. Marks, Ram Ramrakhya, Honglu Zhou, Kevin A. Smith, Joanna Matthiesen, and Joshua B. Tenenbaum

      MERL researchers along with researchers from MIT, GeorgiaTech, Math Kangaroo USA, and Rutgers University are jointly organizing a workshop on vision-and-language algorithmic reasoning at ICCV 2023 and conducting a challenge based on the SMART-101 puzzles described in the paper: Are Deep Neural Networks SMARTer than Second Graders?. A focus of this workshop is to bring together outstanding faculty/researchers working at the intersections of vision, language, and cognition to provide their opinions on the recent breakthroughs in large language models and artificial general intelligence, as well as showcase their cutting edge research that could inspire the audience to search for the missing pieces in our quest towards solving the puzzle of artificial intelligence.

      Workshop link: https://wvlar.github.io/iccv23/
  •  
  •  NEWS    MERL researchers presenting four papers and co-organizing a workshop at CVPR 2023
    Date: June 18, 2023 - June 22, 2023
    Where: Vancouver/Canada
    MERL Contacts: Anoop Cherian; Michael J. Jones; Suhas Lohit; Kuan-Chuan Peng
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Brief
    • MERL researchers are presenting 4 papers and co-organizing a workshop at the CVPR 2023 conference, which will be held in Vancouver, Canada June 18-22. CVPR is one of the most prestigious and competitive international conferences in computer vision. Details are provided below.

      1. “Are Deep Neural Networks SMARTer than Second Graders,” by Anoop Cherian, Kuan-Chuan Peng, Suhas Lohit, Kevin Smith, and Joshua B. Tenenbaum

      We present SMART: a Simple Multimodal Algorithmic Reasoning Task and the associated SMART-101 dataset for evaluating the abstraction, deduction, and generalization abilities of neural networks in solving visuo-linguistic puzzles designed for children in the 6-8 age group. Our experiments using SMART-101 reveal that powerful deep models are not better than random accuracy when analyzed for generalization. We also evaluate large language models (including ChatGPT) on a subset of SMART-101 and find that while these models show convincing reasoning abilities, their answers are often incorrect.

      Paper: https://arxiv.org/abs/2212.09993

      2. “EVAL: Explainable Video Anomaly Localization,” by Ashish Singh, Michael J. Jones, and Erik Learned-Miller

      This work presents a method for detecting unusual activities in videos by building a high-level model of activities found in nominal videos of a scene. The high-level features used in the model are human understandable and include attributes such as the object class and the directions and speeds of motion. Such high-level features allow our method to not only detect anomalous activity but also to provide explanations for why it is anomalous.

      Paper: https://arxiv.org/abs/2212.07900

      3. "Aligning Step-by-Step Instructional Diagrams to Video Demonstrations," by Jiahao Zhang, Anoop Cherian, Yanbin Liu, Yizhak Ben-Shabat, Cristian Rodriguez, and Stephen Gould

      The rise of do-it-yourself (DIY) videos on the web has made it possible even for an unskilled person (or a skilled robot) to imitate and follow instructions to complete complex real world tasks. In this paper, we consider the novel problem of aligning instruction steps that are depicted as assembly diagrams (commonly seen in Ikea assembly manuals) with video segments from in-the-wild videos. We present a new dataset: Ikea Assembly in the Wild (IAW) and propose a contrastive learning framework for aligning instruction diagrams with video clips.

      Paper: https://arxiv.org/pdf/2303.13800.pdf

      4. "HaLP: Hallucinating Latent Positives for Skeleton-Based Self-Supervised Learning of Actions," by Anshul Shah, Aniket Roy, Ketul Shah, Shlok Kumar Mishra, David Jacobs, Anoop Cherian, and Rama Chellappa

      In this work, we propose a new contrastive learning approach to train models for skeleton-based action recognition without labels. Our key contribution is a simple module, HaLP: Hallucinating Latent Positives for contrastive learning. HaLP explores the latent space of poses in suitable directions to generate new positives. Our experiments using HaLP demonstrates strong empirical improvements.

      Paper: https://arxiv.org/abs/2304.00387

      The 4th Workshop on Fair, Data-Efficient, and Trusted Computer Vision

      MERL researcher Kuan-Chuan Peng is co-organizing the fourth Workshop on Fair, Data-Efficient, and Trusted Computer Vision (https://fadetrcv.github.io/2023/) in conjunction with CVPR 2023 on June 18, 2023. This workshop provides a focused venue for discussing and disseminating research in the areas of fairness, bias, and trust in computer vision, as well as adjacent domains such as computational social science and public policy.
  •  
  •  NEWS    MERL Researchers Present Thirteen Papers at the 2023 IEEE International Conference on Robotics and Automation (ICRA)
    Date: May 29, 2023 - June 2, 2023
    Where: 2023 IEEE International Conference on Robotics and Automation (ICRA)
    MERL Contacts: Anoop Cherian; Radu Corcodel; Siddarth Jain; Devesh K. Jha; Toshiaki Koike-Akino; Tim K. Marks; Daniel N. Nikovski; Arvind Raghunathan; Diego Romeres
    Research Areas: Computer Vision, Machine Learning, Optimization, Robotics
    Brief
    • MERL researchers will present thirteen papers, including eight main conference papers and five workshop papers, at the 2023 IEEE International Conference on Robotics and Automation (ICRA) to be held in London, UK from May 29 to June 2. ICRA is one of the largest and most prestigious conferences in the robotics community. The papers cover a broad set of topics in Robotics including estimation, manipulation, vision-based object recognition and segmentation, tactile estimation and tool manipulation, robotic food handling, robot skill learning, and model-based reinforcement learning.

      In addition to the paper presentations, MERL robotics researchers will also host an exhibition booth and look forward to discussing our research with visitors.
  •  
  •  TALK    [MERL Seminar Series 2023] Dr. Suraj Srinivas presents talk titled Pitfalls and Opportunities in Interpretable Machine Learning
    Date & Time: Tuesday, March 14, 2023; 1:00 PM
    Speaker: Suraj Srinivas, Harvard University
    MERL Host: Suhas Lohit
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Abstract
    • In this talk, I will discuss our recent research on understanding post-hoc interpretability. I will begin by introducing a characterization of post-hoc interpretability methods as local function approximators, and the implications of this viewpoint, including a no-free-lunch theorem for explanations. Next, we shall challenge the assumption that post-hoc explanations provide information about a model's discriminative capabilities p(y|x) and instead demonstrate that many common methods instead rely on a conditional generative model p(x|y). This observation underscores the importance of being cautious when using such methods in practice. Finally, I will propose to resolve this via regularization of model structure, specifically by training low curvature neural networks, resulting in improved model robustness and stable gradients.
  •  
  •  AWARD    MERL paper wins major award from IEEE Computer Society
    Date: January 12, 2023
    Awarded to: William T. Freeman, Thouis R. Jones, and Egon C. Pasztor
    Awarded by: IEEE Computer Society
    Research Areas: Computer Vision, Machine Learning
    Brief
    • The MERL paper entitled, "Example-Based Super-Resolution" by William T. Freeman, Thouis R. Jones, and Egon C. Pasztor, published in a 2002 issue of IEEE Computer Graphics and Applications, has been awarded a 2021 Test of Time Award by the IEEE Computer Society. This work was done while the principal investigator, Prof. Freeman, was a research scientist at MERL; he is now a Professor of Electrical Engineering and Computer Science at MIT.

      This best paper award recognizes regular or special issue papers published by the magazine that have made profound and long-lasting research impacts in bridging the theory and practice of computer graphics. "This paper is an early example of using learning for a low-level vision task and we are very proud of the pioneering work that MERL has done in this area prior to the deep learning revolution," says Anthony Vetro, VP & Director at MERL.
  •  
  •  EVENT    MERL's Virtual Open House 2022
    Date & Time: Monday, December 12, 2022; 1:00pm-5:30pm ET
    Location: Mitsubishi Electric Research Laboratories (MERL)/Virtual
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video
    Brief
    • Join MERL's virtual open house on December 12th, 2022! Featuring a keynote, live sessions, research area booths, and opportunities to interact with our research team. Discover who we are and what we do, and learn about internship and employment opportunities.
  •  
  •  NEWS    MERL researchers presenting five papers at NeurIPS 2022
    Date: November 29, 2022 - December 9, 2022
    Where: NeurIPS 2022
    MERL Contacts: Moitreya Chatterjee; Anoop Cherian; Michael J. Jones; Suhas Lohit
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
    Brief
    • MERL researchers are presenting 5 papers at the NeurIPS Conference, which will be held in New Orleans from Nov 29-Dec 1st, with virtual presentations in the following week. NeurIPS is one of the most prestigious and competitive international conferences in machine learning.

      MERL papers in NeurIPS 2022:

      1. “AVLEN: Audio-Visual-Language Embodied Navigation in 3D Environments” by Sudipta Paul, Amit Roy-Chowdhary, and Anoop Cherian

      This work proposes a unified multimodal task for audio-visual embodied navigation where the navigating agent can also interact and seek help from a human/oracle in natural language when it is uncertain of its navigation actions. We propose a multimodal deep hierarchical reinforcement learning framework for solving this challenging task that allows the agent to learn when to seek help and how to use the language instructions. AVLEN agents can interact anywhere in the 3D navigation space and demonstrate state-of-the-art performances when the audio-goal is sporadic or when distractor sounds are present.

      2. “Learning Partial Equivariances From Data” by David W. Romero and Suhas Lohit

      Group equivariance serves as a good prior improving data efficiency and generalization for deep neural networks, especially in settings with data or memory constraints. However, if the symmetry groups are misspecified, equivariance can be overly restrictive and lead to bad performance. This paper shows how to build partial group convolutional neural networks that learn to adapt the equivariance levels at each layer that are suitable for the task at hand directly from data. This improves performance while retaining equivariance properties approximately.

      3. “Learning Audio-Visual Dynamics Using Scene Graphs for Audio Source Separation” by Moitreya Chatterjee, Narendra Ahuja, and Anoop Cherian

      There often exist strong correlations between the 3D motion dynamics of a sounding source and its sound being heard, especially when the source is moving towards or away from the microphone. In this paper, we propose an audio-visual scene-graph that learns and leverages such correlations for improved visually-guided audio separation from an audio mixture, while also allowing predicting the direction of motion of the sound source.

      4. “What Makes a "Good" Data Augmentation in Knowledge Distillation - A Statistical Perspective” by Huan Wang, Suhas Lohit, Michael Jones, and Yun Fu

      This paper presents theoretical and practical results for understanding what makes a particular data augmentation technique (DA) suitable for knowledge distillation (KD). We design a simple metric that works very well in practice to predict the effectiveness of DA for KD. Based on this metric, we also propose a new data augmentation technique that outperforms other methods for knowledge distillation in image recognition networks.

      5. “FeLMi : Few shot Learning with hard Mixup” by Aniket Roy, Anshul Shah, Ketul Shah, Prithviraj Dhar, Anoop Cherian, and Rama Chellappa

      Learning from only a few examples is a fundamental challenge in machine learning. Recent approaches show benefits by learning a feature extractor on the abundant and labeled base examples and transferring these to the fewer novel examples. However, the latter stage is often prone to overfitting due to the small size of few-shot datasets. In this paper, we propose a novel uncertainty-based criteria to synthetically produce “hard” and useful data by mixing up real data samples. Our approach leads to state-of-the-art results on various computer vision few-shot benchmarks.
  •  
  •  TALK    [MERL Seminar Series 2022] Prof. Jiajun Wu presents talk titled Understanding the Visual World Through Naturally Supervised Code
    Date & Time: Tuesday, November 1, 2022; 1:00 PM
    Speaker: Jiajun Wu, Stanford University
    MERL Host: Anoop Cherian
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Abstract
    • The visual world has its inherent structure: scenes are made of multiple identical objects; different objects may have the same color or material, with a regular layout; each object can be symmetric and have repetitive parts. How can we infer, represent, and use such structure from raw data, without hampering the expressiveness of neural networks? In this talk, I will demonstrate that such structure, or code, can be learned from natural supervision. Here, natural supervision can be from pixels, where neuro-symbolic methods automatically discover repetitive parts and objects for scene synthesis. It can also be from objects, where humans during fabrication introduce priors that can be leveraged by machines to infer regular intrinsics such as texture and material. When solving these problems, structured representations and neural nets play complementary roles: it is more data-efficient to learn with structured representations, and they generalize better to new scenarios with robustly captured high-level information; neural nets effectively extract complex, low-level features from cluttered and noisy visual data.
  •  
  •  EVENT    SANE 2022 - Speech and Audio in the Northeast
    Date: Thursday, October 6, 2022
    Location: Kendall Square, Cambridge, MA
    MERL Contacts: Anoop Cherian; Jonathan Le Roux
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
    Brief
    • SANE 2022, a one-day event gathering researchers and students in speech and audio from the Northeast of the American continent, was held on Thursday October 6, 2022 in Kendall Square, Cambridge, MA.

      It was the 9th edition in the SANE series of workshops, which started in 2012 and was held every year alternately in Boston and New York until 2019. Since the first edition, the audience has grown to a record 200 participants and 45 posters in 2019. After a 2-year hiatus due to the pandemic, SANE returned with an in-person gathering of 140 students and researchers.

      SANE 2022 featured invited talks by seven leading researchers from the Northeast: Rupal Patel (Northeastern/VocaliD), Wei-Ning Hsu (Meta FAIR), Scott Wisdom (Google), Tara Sainath (Google), Shinji Watanabe (CMU), Anoop Cherian (MERL), and Chuang Gan (UMass Amherst/MIT-IBM Watson AI Lab). It also featured a lively poster session with 29 posters.

      SANE 2022 was co-organized by Jonathan Le Roux (MERL), Arnab Ghoshal (Apple), John Hershey (Google), and Shinji Watanabe (CMU). SANE remained a free event thanks to generous sponsorship by Bose, Google, MERL, and Microsoft.

      Slides and videos of the talks will be released on the SANE workshop website.
  •  
  •  NEWS    MERL launches Postdoctoral Research Fellow program
    Date: September 21, 2022
    MERL Contacts: Philip V. Orlik; Anthony Vetro
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio
    Brief
    • Mitsubishi Electric Research Laboratories (MERL) invites qualified postdoctoral candidates to apply for the position of Postdoctoral Research Fellow. This position provides early career scientists the opportunity to work at a unique, academically-oriented industrial research laboratory. Successful candidates will be expected to define and pursue their own original research agenda, explore connections to established laboratory initiatives, and publish high impact articles in leading venues. Please refer to our web page for further details.
  •  
  •  TALK    [MERL Seminar Series 2022] Prof. Chuang Gan presents talk titled Learning to Perceive Physical Scenes from Multi-Sensory Data
    Date & Time: Tuesday, September 6, 2022; 12:00 PM EDT
    Speaker: Chuang Gan, UMass Amherst & MIT-IBM Watson AI Lab
    MERL Host: Jonathan Le Roux
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
    Abstract
    • Human sensory perception of the physical world is rich and multimodal and can flexibly integrate input from all five sensory modalities -- vision, touch, smell, hearing, and taste. However, in AI, attention has primarily focused on visual perception. In this talk, I will introduce my efforts in connecting vision with sound, which will allow machine perception systems to see objects and infer physics from multi-sensory data. In the first part of my talk, I will introduce a. self-supervised approach that could learn to parse images and separate the sound sources by watching and listening to unlabeled videos without requiring additional manual supervision. In the second part of my talk, I will show we may further infer the underlying causal structure in 3D environments through visual and auditory observations. This enables agents to seek the sound source of repeating environmental sound (e.g., alarm) or identify what object has fallen, and where, from an intermittent impact sound.
  •  
  •  NEWS    MERL presenting 8 papers at ICASSP 2022
    Date: May 22, 2022 - May 27, 2022
    Where: Singapore
    MERL Contacts: Anoop Cherian; Chiori Hori; Toshiaki Koike-Akino; Jonathan Le Roux; Tim K. Marks; Philip V. Orlik; Kuan-Chuan Peng; Pu (Perry) Wang; Gordon Wichern
    Research Areas: Artificial Intelligence, Computer Vision, Signal Processing, Speech & Audio
    Brief
    • MERL researchers are presenting 8 papers at the IEEE International Conference on Acoustics, Speech & Signal Processing (ICASSP), which is being held in Singapore from May 22-27, 2022. A week of virtual presentations also took place earlier this month.

      Topics to be presented include recent advances in speech recognition, audio processing, scene understanding, computational sensing, and classification.

      ICASSP is the flagship conference of the IEEE Signal Processing Society, and the world's largest and most comprehensive technical conference focused on the research advances and latest technological development in signal and information processing. The event attracts more than 2000 participants each year.
  •  
  •  NEWS    MERL Scientists Presenting 5 Papers at IEEE International Conference on Communications (ICC) 2022
    Date: May 16, 2022 - May 20, 2022
    Where: Seoul, Korea
    MERL Contacts: Jianlin Guo; Toshiaki Koike-Akino; Philip V. Orlik; Kieran Parsons; Pu (Perry) Wang; Ye Wang
    Research Areas: Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Machine Learning, Signal Processing
    Brief
    • MERL Connectivity & Information Processing Team scientists remotely presented 5 papers at the IEEE International Conference on Communications (ICC) 2022, held in Seoul Korea on May 16-20, 2022. Topics presented include recent advancements in communications technologies, deep learning methods, and quantum machine learning (QML). Presentation videos are also found on our YouTube channel. In addition, K. J. Kim organized "Industrial Private 5G-and-beyond Wireless Networks Workshop" at the conference.

      IEEE ICC is one of two IEEE Communications Society’s flagship conferences (ICC and Globecom). Each year, close to 2,000 attendees from over 70 countries attend IEEE ICC to take advantage of a program which consists of exciting keynote session, robust technical paper sessions, innovative tutorials and workshops, and engaging industry sessions. This 5-day event is known for bringing together audiences from both industry and academia to learn about the latest research and innovations in communications and networking technology, share ideas and best practices, and collaborate on future projects.
  •  
  •  NEWS    Radu Corcodel to present invited seminar at NYU on Robot Vision
    Date: May 4, 2022
    MERL Contact: Radu Corcodel
    Research Areas: Computer Vision, Robotics
    Brief
    • Radu Corcodel, a Principal Research Scientist in MERL's Computer Vision Group, will present an overview of the Robot Perception research published by MERL for advanced manipulation. The talk will mainly cover topics pertaining to robotic manipulation in unstructured environments such as machine vision, tactile sensing and autonomous grasping. The seminar will also cover specific perception problems in non-prehensile interactions such as Contact-Implicit Trajectory Optimization and Tactile Classification, and is intended for a broader audience.
  •  
  •  TALK    [MERL Seminar Series 2022] Prof. Vincent Sitzmann presents talk titled Self-Supervised Scene Representation Learning
    Date & Time: Wednesday, March 30, 2022; 11:00 AM EDT
    Speaker: Vincent Sitzmann, MIT
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Abstract
    • Given only a single picture, people are capable of inferring a mental representation that encodes rich information about the underlying 3D scene. We acquire this skill not through massive labeled datasets of 3D scenes, but through self-supervised observation and interaction. Building machines that can infer similarly rich neural scene representations is critical if they are to one day parallel people’s ability to understand, navigate, and interact with their surroundings. This poses a unique set of challenges that sets neural scene representations apart from conventional representations of 3D scenes: Rendering and processing operations need to be differentiable, and the type of information they encode is unknown a priori, requiring them to be extraordinarily flexible. At the same time, training them without ground-truth 3D supervision is an underdetermined problem, highlighting the need for structure and inductive biases without which models converge to spurious explanations.

      I will demonstrate how we can equip neural networks with inductive biases that enables them to learn 3D geometry, appearance, and even semantic information, self-supervised only from posed images. I will show how this approach unlocks the learning of priors, enabling 3D reconstruction from only a single posed 2D image, and how we may extend these representations to other modalities such as sound. I will then discuss recent work on learning the neural rendering operator to make rendering and training fast, and how this speed-up enables us to learn object-centric neural scene representations, learning to decompose 3D scenes into objects, given only images. Finally, I will talk about a recent application of self-supervised scene representation learning in robotic manipulation, where it enables us to learn to manipulate classes of objects in unseen poses from only a handful of human demonstrations.
  •  
  •  NEWS    MERL work on scene-aware interaction featured in IEEE Spectrum
    Date: March 1, 2022
    MERL Contacts: Anoop Cherian; Chiori Hori; Jonathan Le Roux; Tim K. Marks; Anthony Vetro
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
    Brief
    • MERL's research on scene-aware interaction was recently featured in an IEEE Spectrum article. The article, titled "At Last, A Self-Driving Car That Can Explain Itself" and authored by MERL Senior Principal Research Scientist Chiori Hori and MERL Director Anthony Vetro, gives an overview of MERL's efforts towards developing a system that can analyze multimodal sensing information for highly natural and intuitive interaction with humans through context-dependent generation of natural language. The technology recognizes contextual objects and events based on multimodal sensing information, such as images and video captured with cameras, audio information recorded with microphones, and localization information measured with LiDAR.

      Scene-Aware Interaction for car navigation, one target application that the article focuses on, will provide drivers with intuitive route guidance. Scene-Aware Interaction technology is expected to have wide applicability, including human-machine interfaces for in-vehicle infotainment, interaction with service robots in building and factory automation systems, systems that monitor the health and well-being of people, surveillance systems that interpret complex scenes for humans and encourage social distancing, support for touchless operation of equipment in public areas, and much more. MERL's Scene-Aware Interaction Technology had previously been featured in a Mitsubishi Electric Corporation Press Release.

      IEEE Spectrum is the flagship magazine and website of the IEEE, the world’s largest professional organization devoted to engineering and the applied sciences. IEEE Spectrum has a circulation of over 400,000 engineers worldwide, making it one of the leading science and engineering magazines.
  •  
  •  EVENT    Prof. Melanie Zeilinger of ETH to give keynote at MERL's Virtual Open House
    Date & Time: Thursday, December 9, 2021; 1:00pm - 5:30pm EST
    Location: Virtual Event
    Speaker: Prof. Melanie Zeilinger, ETH
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video, Human-Computer Interaction, Information Security
    Brief
    • MERL is excited to announce the second keynote speaker for our Virtual Open House 2021:
      Prof. Melanie Zeilinger from ETH .

      Our virtual open house will take place on December 9, 2021, 1:00pm - 5:30pm (EST).

      Join us to learn more about who we are, what we do, and discuss our internship and employment opportunities. Prof. Zeilinger's talk is scheduled for 3:15pm - 3:45pm (EST).

      Registration: https://mailchi.mp/merl/merlvoh2021

      Keynote Title: Control Meets Learning - On Performance, Safety and User Interaction

      Abstract: With increasing sensing and communication capabilities, physical systems today are becoming one of the largest generators of data, making learning a central component of autonomous control systems. While this paradigm shift offers tremendous opportunities to address new levels of system complexity, variability and user interaction, it also raises fundamental questions of learning in a closed-loop dynamical control system. In this talk, I will present some of our recent results showing how even safety-critical systems can leverage the potential of data. I will first briefly present concepts for using learning for automatic controller design and for a new safety framework that can equip any learning-based controller with safety guarantees. The second part will then discuss how expert and user information can be utilized to optimize system performance, where I will particularly highlight an approach developed together with MERL for personalizing the motion planning in autonomous driving to the individual driving style of a passenger.
  •  
  •  EVENT    Prof. Ashok Veeraraghavan of Rice University to give keynote at MERL's Virtual Open House
    Date & Time: Thursday, December 9, 2021; 1:00pm - 5:30pm EST
    Location: Virtual Event
    Speaker: Prof. Ashok Veeraraghavan, Rice University
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video, Human-Computer Interaction, Information Security
    Brief
    • MERL is excited to announce the first keynote speaker for our Virtual Open House 2021:
      Prof. Ashok Veeraraghavan from Rice University.

      Our virtual open house will take place on December 9, 2021, 1:00pm - 5:30pm (EST).

      Join us to learn more about who we are, what we do, and discuss our internship and employment opportunities. Prof. Veeraraghavan's talk is scheduled for 1:15pm - 1:45pm (EST).

      Registration: https://mailchi.mp/merl/merlvoh2021

      Keynote Title: Computational Imaging: Beyond the limits imposed by lenses.

      Abstract: The lens has long been a central element of cameras, since its early use in the mid-nineteenth century by Niepce, Talbot, and Daguerre. The role of the lens, from the Daguerrotype to modern digital cameras, is to refract light to achieve a one-to-one mapping between a point in the scene and a point on the sensor. This effect enables the sensor to compute a particular two-dimensional (2D) integral of the incident 4D light-field. We propose a radical departure from this practice and the many limitations it imposes. In the talk we focus on two inter-related research projects that attempt to go beyond lens-based imaging.

      First, we discuss our lab’s recent efforts to build flat, extremely thin imaging devices by replacing the lens in a conventional camera with an amplitude mask and computational reconstruction algorithms. These lensless cameras, called FlatCams can be less than a millimeter in thickness and enable applications where size, weight, thickness or cost are the driving factors. Second, we discuss high-resolution, long-distance imaging using Fourier Ptychography, where the need for a large aperture aberration corrected lens is replaced by a camera array and associated phase retrieval algorithms resulting again in order of magnitude reductions in size, weight and cost. Finally, I will spend a few minutes discussing how the wholistic computational imaging approach can be used to create ultra-high-resolution wavefront sensors.
  •  
  •  EVENT    MERL Virtual Open House 2021
    Date & Time: Thursday, December 9, 2021; 100pm-5:30pm (EST)
    Location: Virtual Event
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video, Human-Computer Interaction, Information Security
    Brief
    • Mitsubishi Electric Research Laboratories cordially invites you to join our Virtual Open House, on December 9, 2021, 1:00pm - 5:30pm (EST).

      The event will feature keynotes, live sessions, research area booths, and time for open interactions with our researchers. Join us to learn more about who we are, what we do, and discuss our internship and employment opportunities.

      Registration: https://mailchi.mp/merl/merlvoh2021
  •  
  •  TALK    [MERL Seminar Series 2021] Dr. Hsiao-Yu (Fish) Tung presents talk at MERL entitled Learning to See by Moving: Self-supervising 3D scene representations for perception, control, and visual reasoning
    Date & Time: Tuesday, November 2, 2021; 1:00 PM EST
    Speaker: Dr. Hsiao-Yu (Fish) Tung, MIT BCS
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Robotics
    Abstract
    • Current state-of-the-art CNNs can localize and name objects in internet photos, yet, they miss the basic knowledge that a two-year-old toddler has possessed: objects persist over time despite changes in the observer’s viewpoint or during cross-object occlusions; objects have 3D extent; solid objects do not pass through each other. In this talk, I will introduce neural architectures that learn to parse video streams of a static scene into world-centric 3D feature maps by disentangling camera motion from scene appearance. I will show the proposed architectures learn object permanence, can imagine RGB views from novel viewpoints in truly novel scenes, can conduct basic spatial reasoning and planning, can infer affordability in sentences, and can learn geometry-aware 3D concepts that allow pose-aware object recognition to happen with weak/sparse labels. Our experiments suggest that the proposed architectures are essential for the models to generalize across objects and locations, and it overcomes many limitations of 2D CNNs. I will show how we can use the proposed 3D representations to build machine perception and physical understanding more close to humans.
  •  
  •  TALK    [MERL Seminar Series 2021] Dr. Ruohan Gao presents talk at MERL entitled Look and Listen: From Semantic to Spatial Audio-Visual Perception
    Date & Time: Tuesday, September 28, 2021; 1:00 PM EST
    Speaker: Dr. Ruohan Gao, Stanford University
    MERL Host: Gordon Wichern
    Research Areas: Computer Vision, Machine Learning, Speech & Audio
    Abstract
    • While computer vision has made significant progress by "looking" — detecting objects, actions, or people based on their appearance — it often does not listen. Yet cognitive science tells us that perception develops by making use of all our senses without intensive supervision. Towards this goal, in this talk I will present my research on audio-visual learning — We disentangle object sounds from unlabeled video, use audio as an efficient preview for action recognition in untrimmed video, decode the monaural soundtrack into its binaural counterpart by injecting visual spatial information, and use echoes to interact with the environment for spatial image representation learning. Together, these are steps towards multimodal understanding of the visual world, where audio serves as both the semantic and spatial signals. In the end, I will also briefly talk about our latest work on multisensory learning for robotics.
  •  
  •  NEWS    Anoop Cherian gave an invited talk at the Department of Computer Science at the University of Bristol, UK
    Date: September 7, 2021
    MERL Contact: Anoop Cherian
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Brief
    • Anoop Cherian, a Principal Research Scientist in MERL's Computer Vision group, gave an invited virtual talk on "InSeGAN: An Unsupervised Approach to Identical Instance Segmentation" at the Visual Information Laboratory of University of Bristol, UK. The talk described a new approach to segmenting varied appearances of nearly identical 3D objects in depth images. More details of the talk can be found in the following paper https://arxiv.org/abs/2108.13865, which will be presented at the International Conference on Computer Vision (ICCV'21).
  •