- Date: August 27, 2024 - August 30, 2024
Where: Kyoto, Japan
MERL Contact: Rien Quirynen
Research Areas: Control, Machine Learning, Multi-Physical Modeling, Optimization, Robotics
Brief - MERL researcher Rien Quirynen has been appointed as Vice-Chair from Industry of the International Program Committee of the 8th IFAC Conference on Nonlinear Model Predictive Control, which will be held in Kyoto, Japan, in August 2024.
IFAC NMPC is the main symposium focused on model predictive control, theory, methods and applications, includes contributions on control, optimization, and machine learning research, and is held every 3 years.
-
- Date: February 16, 2023 - February 17, 2023
Where: Pennsylvania State University
MERL Contact: Christopher R. Laughman
Research Areas: Control, Machine Learning, Multi-Physical Modeling
Brief - On February 16 and 17, Chris Laughman, Senior Team Leader of the Multiphysical Systems Team, presented lectures for the Systems, Robotics, and Controls Seminar Series in the School of Engineering, and for the Distinguished Speaker Series in Architectural Engineering. His talk was titled "Architectural Thermofluid Systems: Next-Generation Challenges and Opportunities," and described characteristics of these systems that require specific attention in model-based system engineering processes, as well as MERL research to address these challenges.
-
- Date: December 9, 2022 - December 11, 2022
MERL Contact: Yebin Wang
Research Areas: Communications, Control, Optimization
Brief - Future factory, in the era of industry 4.0, is characterized by autonomy, digital twin, and mass customization. This talk, titled "Future factory automation and cyber-physical system: an industrial perspective," focuses on tackling the challenges arising from mass customization, for example reconfigurable machine controller and material flow.
-
- Date: December 2, 2022 - December 8, 2022
MERL Contacts: Matthew Brand; Toshiaki Koike-Akino; Jing Liu; Saviz Mowlavi; Kieran Parsons; Ye Wang
Research Areas: Artificial Intelligence, Control, Dynamical Systems, Machine Learning, Signal Processing
Brief - In addition to 5 papers in recent news (https://www.merl.com/news/news-20221129-1450), MERL researchers presented 2 papers at the NeurIPS Conference Workshop, which was held Dec. 2-8. NeurIPS is one of the most prestigious and competitive international conferences in machine learning.
- “Optimal control of PDEs using physics-informed neural networks” by Saviz Mowlavi and Saleh Nabi
Physics-informed neural networks (PINNs) have recently become a popular method for solving forward and inverse problems governed by partial differential equations (PDEs). By incorporating the residual of the PDE into the loss function of a neural network-based surrogate model for the unknown state, PINNs can seamlessly blend measurement data with physical constraints. Here, we extend this framework to PDE-constrained optimal control problems, for which the governing PDE is fully known and the goal is to find a control variable that minimizes a desired cost objective. We validate the performance of the PINN framework by comparing it to state-of-the-art adjoint-based optimization, which performs gradient descent on the discretized control variable while satisfying the discretized PDE.
- “Learning with noisy labels using low-dimensional model trajectory” by Vasu Singla, Shuchin Aeron, Toshiaki Koike-Akino, Matthew E. Brand, Kieran Parsons, Ye Wang
Noisy annotations in real-world datasets pose a challenge for training deep neural networks (DNNs), detrimentally impacting generalization performance as incorrect labels may be memorized. In this work, we probe the observations that early stopping and low-dimensional subspace learning can help address this issue. First, we show that a prior method is sensitive to the early stopping hyper-parameter. Second, we investigate the effectiveness of PCA, for approximating the optimization trajectory under noisy label information. We propose to estimate the low-rank subspace through robust and structured variants of PCA, namely Robust PCA, and Sparse PCA. We find that the subspace estimated through these variants can be less sensitive to early stopping, and can outperform PCA to achieve better test error when trained on noisy labels.
- In addition, new MERL researcher, Jing Liu, also presented a paper entitled “CoPur: Certifiably Robust Collaborative Inference via Feature Purification" based on his previous work before joining MERL. His paper was elected as a spotlight paper to be highlighted in lightening talks and featured paper panel.
-
- Date: December 8, 2022
Awarded to: Arvind Raghunathan
MERL Contact: Arvind Raghunathan
Research Areas: Control, Optimization
Brief - Arvind Raghunathan, Senior Principal Research Scientist in the Data Analytics group, received the IEEE Control Systems Society Roberto Tempo Best CDC Paper Award. The award was presented at the 2022 IEEE Conference on Decision & Control (CDC).
The award is given annually in honor of Roberto Tempo, the 44th President of the IEEE Control Systems Society (CSS). The Tempo Award Committee selects the best paper from the previous year's CDC based on originality, potential impact on any aspect of control theory, technology, or implementation, and for the clarity of writing. This year's award committee was headed by Prof. Patrizio Colaneri, Politecnico di Milano. Arvind's paper was nominated for the award by Prof. Lorenz Biegler, Carnegie Mellon University, with supporting letters from Prof. Andreas Waechter, Northwestern University, and Prof. Victor Zavala, University of Wisconsin-Madison.
-
- Date: December 6, 2022 - December 9, 2022
Where: Cancún, Mexico
MERL Contacts: Mouhacine Benosman; Karl Berntorp; Ankush Chakrabarty; Marcus Greiff; Devesh K. Jha; Arvind Raghunathan; Diego Romeres; Yebin Wang
Research Areas: Control, Optimization
Brief - MERL researchers presented six papers at the Conference on Decision and Control that was held in Cancún, Mexico from December 6-9, 2022. The papers covered a broad range of topics in the areas of decision making and control, including Bayesian optimization, quadratic programming, solution of differential equations, distributed Kalman filtering, thermal monitoring of batteries, and closed-loop control optimization.
-
- Date: December 5, 2022
Where: Cancun, Mexico
MERL Contact: Karl Berntorp
Research Areas: Control, Machine Learning
Brief - Karl Berntorp was an invited speaker at the workshop on Gaussian Process Learning-Based Control organized at the Conference on Decision and Control (CDC) 2022 in Cancun, Mexico.
The talk was part of a tutorial-style workshop aimed to provide insight into the fundamentals behind Gaussian processes for modeling and control and sketching some of the open challenges and opportunities using Gaussian processes for modeling and control. The talk titled ``Gaussian Processes for Learning and Control: Opportunities for Real-World Impact" described some of MERL's efforts in using Gaussian processes (GPs) for learning and control, with several application examples and discussing some of the key benefits and limitations with using GPs for learning-based control.
-
- Date & Time: Monday, December 12, 2022; 1:00pm-5:30pm ET
Location: Mitsubishi Electric Research Laboratories (MERL)/Virtual
Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video
Brief - Join MERL's virtual open house on December 12th, 2022! Featuring a keynote, live sessions, research area booths, and opportunities to interact with our research team. Discover who we are and what we do, and learn about internship and employment opportunities.
-
- Date: November 14, 2022
Where: Zoom
MERL Contact: Rien Quirynen
Research Areas: Control, Dynamical Systems, Optimization, Robotics
Brief - Rien Quirynen will give an invited talk at the Electrical and Computer Engineering Department, University of California Santa Cruz on "Real-time Motion Planning and Predictive Control by Mixed-integer Programming for Autonomous Vehicles". The talk will present recent work on a tailored branch-and-bound method for real-time motion planning and decision making on embedded processing units, and recent results for two applications related to automated driving and traffic control.
-
- Date: November 11, 2022
MERL Contact: Avishai Weiss
Research Areas: Control, Dynamical Systems, Optimization
Brief - Avishai Weiss will give an invited talk at the William Maxwell Reed Seminar Series, Mechanical and Aerospace Engineering Department, University of Kentucky on "Fail-Safe Spacecraft Rendezvous." The talk will present some recent developments at MERL on guaranteeing safe rendezvous trajectories that avoid colliding with the target in the event of thruster anomalies.
-
- Date & Time: Wednesday, October 26, 2022; 1:00 PM
Speaker: Ufuk Topcu, The University of Texas at Austin
MERL Host: Abraham P. Vinod
Research Areas: Control, Dynamical Systems, Optimization
Abstract - Autonomous systems are emerging as a driving technology for countlessly many applications. Numerous disciplines tackle the challenges toward making these systems trustworthy, adaptable, user-friendly, and economical. On the other hand, the existing disciplinary boundaries delay and possibly even obstruct progress. I argue that the nonconventional problems that arise in designing and verifying autonomous systems require hybrid solutions in the intersection of learning, formal methods, and controls. I will present examples of such hybrid solutions in the context of learning in sequential decision-making processes. These results offer novel means for effectively integrating physics-based, contextual, or structural prior knowledge into data-driven learning algorithms. They improve data efficiency by several orders of magnitude and generalizability to environments and tasks that the system had not experienced previously.
-
- Date: October 20, 2022
Where: University Park, PA
MERL Contact: Devesh K. Jha
Research Areas: Artificial Intelligence, Control, Robotics
Brief - Devesh Jha, a Principal Research Scientist in the Data Analytics Group at MERL, delivered an invited talk at The Penn State Seminar Series on Systems, Control and Robotics. This talk presented some of the recent work done at MERL in the areas of optimization and control for robotic manipulation in unstructured environment.
-
- Date: October 24, 2022
Where: Online, 10/24/2022 9:00am (Eastern time)
MERL Contact: Stefano Di Cairano
Research Areas: Control, Dynamical Systems, Optimization, Robotics
Brief - Dr. Stefano Di Cairano (Senior Team Leader at MERL) has been invited to give a public talk at the first IEEE CSS Day event on the status, challenges, and role of control in autonomous driving.
The talk, titled "The Long Voyage Towards Autonomous Driving, with Control Systems as the Co-Pilot", will review some history of autonomous driving, some of the open challenges that control technology may help address, and the next steps towards full-autonomy. The talk is designed for a non-technical audience, to explain the role and impact of control in automated driving technology.
-
- Date & Time: Thursday, October 13, 2022; 1:30pm-2:30pm
Speaker: Prof. Shaoshuai Mou, Purdue University
MERL Host: Yebin Wang
Research Areas: Control, Machine Learning, Optimization
Abstract - Modern society has been relying more and more on engineering advance of autonomous systems, ranging from individual systems (such as a robotic arm for manufacturing, a self-driving car, or an autonomous vehicle for planetary exploration) to cooperative systems (such as a human-robot team, swarms of drones, etc). In this talk we will present our most recent progress in developing a fundamental framework for learning and control in autonomous systems. The framework comes from a differentiation of Pontryagin’s Maximum Principle and is able to provide a unified solution to three classes of learning/control tasks, i.e. adaptive autonomy, inverse optimization, and system identification. We will also present applications of this framework into human-autonomy teaming, especially in enabling an autonomous system to take guidance from human operators, which is usually sparse and vague.
-
- Date: October 10, 2022 - October 11, 2022
Where: University of Freiburg, Germany
MERL Contact: Rien Quirynen
Research Areas: Control, Machine Learning, Optimization
Brief - Rien Quirynen is an invited speaker at an international workshop on Embedded Optimization and Learning for Robotics and Mechatronics, which is organized by the ELO-X project at the University of Freiburg in Germany. This talk, entitled "Embedded learning, optimization and predictive control for autonomous vehicles", presents recent results from multiple projects at MERL that leverage embedded optimization, machine learning and optimal control for autonomous vehicles.
This workshop is part of the ELO-X Fall School and Workshop. Invited external lecturers will present state-of-the-art techniques and applications in the field of Embedded Optimization and Learning. ELO-X is a Marie Curie Innovative Training Network (ITN) funded by the European Commission Horizon 2020 program.
-
- Date: September 21, 2022
MERL Contacts: Philip V. Orlik; Anthony Vetro
Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio
Brief - Mitsubishi Electric Research Laboratories (MERL) invites qualified postdoctoral candidates to apply for the position of Postdoctoral Research Fellow. This position provides early career scientists the opportunity to work at a unique, academically-oriented industrial research laboratory. Successful candidates will be expected to define and pursue their own original research agenda, explore connections to established laboratory initiatives, and publish high impact articles in leading venues. Please refer to our web page for further details.
-
- Date: September 15, 2022
MERL Contact: Yebin Wang
Research Areas: Control, Dynamical Systems, Robotics
Brief - Yebin Wang, a Senior Principal Research Scientist in MERL's Electric Machines and Devices, is serving as an Associate Editor for the IEEE International Conference on Robotics and Automation (ICRA) 2023.
As the flagship conference of the IEEE Robotics and Automation Society, ICRA will bring together the world's top researchers and most important companies to share ideas and advances in our field.
-
- Date: August 25, 2022
Awarded to: Marcus Greiff
MERL Contact: Marcus Greiff
Research Areas: Control, Dynamical Systems, Robotics
Brief - Marcus Greiff, a Visiting Research Scientist at MERL, was awarded one of three outstanding student paper awards at the IEEE CCTA 2022 conference for his paper titled "Quadrotor Control on SU(2)xR3 with SLAM Integration". The award was given for originality, clarity, and potential impact on practical applications of control. The work presents a complete UAV control system design, facilitating autonomous supermarket inventorying without the need for external motion capture systems. A video of the experiments is on YouTube, including both simulations and real-time examples.
-
- Date: June 8, 2022
Where: 2022 American Control Conference
MERL Contacts: Ankush Chakrabarty; Christopher R. Laughman
Research Areas: Control, Machine Learning, Multi-Physical Modeling, Optimization
Brief - Researchers from EPFL (Wenjie Xu, Colin Jones) and EMPA (Bratislav Svetozarevic), in collaboration with MERL researchers Ankush Chakrabarty and Chris Laughman, recently won the ASME Energy Systems Technical Committee Best Paper Award at the 2022 American Control Conference for their work on "VABO: Violation-Aware Bayesian Optimization for Closed-Loop Performance Optimization with Unmodeled Constraints" out of 19 nominations and 3 finalists. The paper describes a data-driven framework for optimizing the performance of constrained control systems by systematically re-evaluating how cautiously/aggressively one should explore the search space to avoid sustained, large-magnitude constraint violations while tolerating small violations, and demonstrates these methods on a physics-based model of a vapor compression cycle.
-
- Date: June 8, 2022 - June 10, 2022
Where: Atlanta, GA
MERL Contacts: Karl Berntorp; Scott A. Bortoff; Ankush Chakrabarty; Stefano Di Cairano; Christopher R. Laughman; Marcel Menner; Rien Quirynen; Abraham P. Vinod; Avishai Weiss
Research Areas: Control, Machine Learning, Optimization
Brief - At the American Control Conference in Atlanta, GA, MERL presented 9 papers on subjects including autonomous-vehicle decision making and motion planning, realtime Bayesian inference and learning, reference governors for hybrid systems, Bayesian optimization, and nonlinear control.
-
- Date & Time: Tuesday, May 3, 2022; 1:00 PM
Speaker: Michael Posa, University of Pennsylvania
MERL Host: Devesh K. Jha
Research Areas: Control, Optimization, Robotics
Abstract
Machine learning has shown incredible promise in robotics, with some notable recent demonstrations in manipulation and sim2real transfer. These results, however, require either an accurate a priori model (for simulation) or a large amount of data. In contrast, my lab is focused on enabling robots to enter novel environments and then, with minimal time to gather information, accomplish complex tasks. In this talk, I will argue that the hybrid or contact-driven nature of real-world robotics, where a robot must safely and quickly interact with objects, drives this high data requirement. In particular, the inductive biases inherent in standard learning methods fundamentally clash with the non-differentiable physics of contact-rich robotics. Focusing on model learning, or system identification, I will show both empirical and theoretical results which demonstrate that contact stiffness leads to poor training and generalization, leading to some healthy skepticism of simulation experiments trained on artificially soft environments. Fortunately, implicit learning formulations, which embed convex optimization problems, can dramatically reshape the optimization landscape for these stiff problems. By carefully reasoning about the roles of stiffness and discontinuity, and integrating non-smooth structures, we demonstrate dramatically improved learning performance. Within this family of approaches, ContactNets accurately identifies the geometry and dynamics of a six-sided cube bouncing, sliding, and rolling across a surface from only a handful of sample trajectories. Similarly, a piecewise-affine hybrid system with thousands of modes can be identified purely from state transitions. Time permitting, I'll discuss how these learned models can be deployed for control via recent results in real-time, multi-contact MPC.
-
- Date & Time: Tuesday, April 12, 2022; 11:00 AM EDT
Speaker: Sebastien Gros, NTNU
MERL Host: Rien Quirynen
Research Areas: Control, Dynamical Systems, Optimization
Abstract
Reinforcement Learning (RL), similarly to many AI-based techniques, is currently receiving a very high attention. RL is most commonly supported by classic Machine Learning techniques, i.e. typically Deep Neural Networks (DNNs). While there are good motivations for using DNNs in RL, there are also significant drawbacks. The lack of “explainability” of the resulting control policies, and the difficulty to provide guarantees on their closed-loop behavior (safety, stability) makes DNN-based policies problematic in many applications. In this talk, we will discuss an alternative approach to support RL, via formal optimal control tools based on Model Predictive Control (MPC). This approach alleviates the issues detailed above, but also presents some challenges. In this talk, we will discuss why MPC is a valid tool to support RL, and how MPC can be combined with RL (RLMPC). We will then discuss some recent results regarding this combination, the known challenges, and the kind of control applications where we believe that RLMPC will be a valuable approach.
-
- Date: February 24, 2022
MERL Contact: Rien Quirynen
Research Areas: Control, Optimization
Brief - Rien Quirynen has accepted an invitation to serve on the editorial board of Journal of Optimal Control Applications and Methods (OCAM) as an Associate Editor.
OCAM provides a forum for papers on the full range of optimal control and related control design methods. The aim is to encourage new developments in optimal control theory and design methodologies that may lead to advances in real control applications.
-
- Date: July 5, 2022 - July 7, 2022
MERL Contact: Mouhacine Benosman
Research Areas: Control, Data Analytics, Dynamical Systems
Brief - The Benelux meeting is an annual conference gathering of the scientific community of Belgium, the Netherlands, and Luxemburg around systems and control. It is especially intended for PhD researchers and a number of activities are dedicated to them, including plenary talks and a mini-course.
Dr. Benosman has been invited to give the mini-course of the 2022 edition of the conference. This course, entitled 'A hybrid approach to control: classical control theory meets machine learning theory', will be centered around the topic of safe and robust machine learning-based control.
-
- Date: December 14, 2021
Research Area: Control
Brief - MERL researcher Uroš Kalabić has been appointed to serve as an associate editor of the IEEE Transactions on Control Systems Technology.
The Transactions on Control Systems Technology bridge the gap between the theory and practice of control engineering. They feature publications on engineering needed to implement practical control systems.
-