News & Events

46 News items, Awards, Events or Talks found.



Learn about the MERL Seminar Series.



  •  NEWS    MERL Papers and Workshops at CVPR 2025
    Date: June 11, 2025 - June 15, 2025
    Where: Nashville, TN, USA
    MERL Contacts: Matthew Brand; Moitreya Chatterjee; Anoop Cherian; François Germain; Michael J. Jones; Toshiaki Koike-Akino; Jing Liu; Suhas Lohit; Tim K. Marks; Pedro Miraldo; Kuan-Chuan Peng; Pu (Perry) Wang; Ye Wang
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Signal Processing, Speech & Audio
    Brief
    • MERL researchers are presenting 2 conference papers, co-organizing two workshops, and presenting 7 workshop papers at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2025 conference, which will be held in Nashville, TN, USA from June 11-15, 2025. CVPR is one of the most prestigious and competitive international conferences in the area of computer vision. Details of MERL contributions are provided below:


      Main Conference Papers:

      1. "UWAV: Uncertainty-weighted Weakly-supervised Audio-Visual Video Parsing" by Y.H. Lai, J. Ebbers, Y. F. Wang, F. Germain, M. J. Jones, M. Chatterjee

      This work deals with the task of weakly‑supervised Audio-Visual Video Parsing (AVVP) and proposes a novel, uncertainty-aware algorithm called UWAV towards that end. UWAV works by producing more reliable segment‑level pseudo‑labels while explicitly weighting each label by its prediction uncertainty. This uncertainty‑aware training, combined with a feature‑mixup regularization scheme, promotes inter‑segment consistency in the pseudo-labels. As a result, UWAV achieves state‑of‑the‑art performance on two AVVP datasets across multiple metrics, demonstrating both effectiveness and strong generalizability.

      Paper: https://www.merl.com/publications/TR2025-072

      2. "TailedCore: Few-Shot Sampling for Unsupervised Long-Tail Noisy Anomaly Detection" by Y. G. Jung, J. Park, J. Yoon, K.-C. Peng, W. Kim, A. B. J. Teoh, and O. Camps.

      This work tackles unsupervised anomaly detection in complex scenarios where normal data is noisy and has an unknown, imbalanced class distribution. Existing models face a trade-off between robustness to noise and performance on rare (tail) classes. To address this, the authors propose TailSampler, which estimates class sizes from embedding similarities to isolate tail samples. Using TailSampler, they develop TailedCore, a memory-based model that effectively captures tail class features while remaining noise-robust, outperforming state-of-the-art methods in extensive evaluations.

      paper: https://www.merl.com/publications/TR2025-077


      MERL Co-Organized Workshops:

      1. Multimodal Algorithmic Reasoning (MAR) Workshop, organized by A. Cherian, K.-C. Peng, S. Lohit, H. Zhou, K. Smith, L. Xue, T. K. Marks, and J. Tenenbaum.

      Workshop link: https://marworkshop.github.io/cvpr25/

      2. The 6th Workshop on Fair, Data-Efficient, and Trusted Computer Vision, organized by N. Ratha, S. Karanam, Z. Wu, M. Vatsa, R. Singh, K.-C. Peng, M. Merler, and K. Varshney.

      Workshop link: https://fadetrcv.github.io/2025/


      Workshop Papers:

      1. "FreBIS: Frequency-Based Stratification for Neural Implicit Surface Representations" by N. Sawada, P. Miraldo, S. Lohit, T.K. Marks, and M. Chatterjee (Oral)

      With their ability to model object surfaces in a scene as a continuous function, neural implicit surface reconstruction methods have made remarkable strides recently, especially over classical 3D surface reconstruction methods, such as those that use voxels or point clouds. Towards this end, we propose FreBIS - a neural implicit‑surface framework that avoids overloading a single encoder with every surface detail. It divides a scene into several frequency bands and assigns a dedicated encoder (or group of encoders) to each band, then enforces complementary feature learning through a redundancy‑aware weighting module. Swapping this frequency‑stratified stack into an off‑the‑shelf reconstruction pipeline markedly boosts 3D surface accuracy and view‑consistent rendering on the challenging BlendedMVS dataset.

      paper: https://www.merl.com/publications/TR2025-074

      2. "Multimodal 3D Object Detection on Unseen Domains" by D. Hegde, S. Lohit, K.-C. Peng, M. J. Jones, and V. M. Patel.

      LiDAR-based object detection models often suffer performance drops when deployed in unseen environments due to biases in data properties like point density and object size. Unlike domain adaptation methods that rely on access to target data, this work tackles the more realistic setting of domain generalization without test-time samples. We propose CLIX3D, a multimodal framework that uses both LiDAR and image data along with supervised contrastive learning to align same-class features across domains and improve robustness. CLIX3D achieves state-of-the-art performance across various domain shifts in 3D object detection.

      paper: https://www.merl.com/publications/TR2025-078

      3. "Improving Open-World Object Localization by Discovering Background" by A. Singh, M. J. Jones, K.-C. Peng, M. Chatterjee, A. Cherian, and E. Learned-Miller.

      This work tackles open-world object localization, aiming to detect both seen and unseen object classes using limited labeled training data. While prior methods focus on object characterization, this approach introduces background information to improve objectness learning. The proposed framework identifies low-information, non-discriminative image regions as background and trains the model to avoid generating object proposals there. Experiments on standard benchmarks show that this method significantly outperforms previous state-of-the-art approaches.

      paper: https://www.merl.com/publications/TR2025-058

      4. "PF3Det: A Prompted Foundation Feature Assisted Visual LiDAR 3D Detector" by K. Li, T. Zhang, K.-C. Peng, and G. Wang.

      This work addresses challenges in 3D object detection for autonomous driving by improving the fusion of LiDAR and camera data, which is often hindered by domain gaps and limited labeled data. Leveraging advances in foundation models and prompt engineering, the authors propose PF3Det, a multi-modal detector that uses foundation model encoders and soft prompts to enhance feature fusion. PF3Det achieves strong performance even with limited training data. It sets new state-of-the-art results on the nuScenes dataset, improving NDS by 1.19% and mAP by 2.42%.

      paper: https://www.merl.com/publications/TR2025-076

      5. "Noise Consistency Regularization for Improved Subject-Driven Image Synthesis" by Y. Ni., S. Wen, P. Konius, A. Cherian

      Fine-tuning Stable Diffusion enables subject-driven image synthesis by adapting the model to generate images containing specific subjects. However, existing fine-tuning methods suffer from two key issues: underfitting, where the model fails to reliably capture subject identity, and overfitting, where it memorizes the subject image and reduces background diversity. To address these challenges, two auxiliary consistency losses are porposed for diffusion fine-tuning. First, a prior consistency regularization loss ensures that the predicted diffusion noise for prior (non- subject) images remains consistent with that of the pretrained model, improving fidelity. Second, a subject consistency regularization loss enhances the fine-tuned model’s robustness to multiplicative noise modulated latent code, helping to preserve subject identity while improving diversity. Our experimental results demonstrate the effectiveness of our approach in terms of image diversity, outperforming DreamBooth in terms of CLIP scores, background variation, and overall visual quality.

      paper: https://www.merl.com/publications/TR2025-073

      6. "LatentLLM: Attention-Aware Joint Tensor Compression" by T. Koike-Akino, X. Chen, J. Liu, Y. Wang, P. Wang, M. Brand

      We propose a new framework to convert a large foundation model such as large language models (LLMs)/large multi- modal models (LMMs) into a reduced-dimension latent structure. Our method uses a global attention-aware joint tensor decomposition to significantly improve the model efficiency. We show the benefit on several benchmark including multi-modal reasoning tasks.

      paper: https://www.merl.com/publications/TR2025-075

      7. "TuneComp: Joint Fine-Tuning and Compression for Large Foundation Models" by T. Koike-Akino, X. Chen, J. Liu, Y. Wang, P. Wang, M. Brand

      To reduce model size during post-training, compression methods, including knowledge distillation, low-rank approximation, and pruning, are often applied after fine- tuning the model. However, sequential fine-tuning and compression sacrifices performance, while creating a larger than necessary model as an intermediate step. In this work, we aim to reduce this gap, by directly constructing a smaller model while guided by the downstream task. We propose to jointly fine-tune and compress the model by gradually distilling it to a pruned low-rank structure. Experiments demonstrate that joint fine-tuning and compression significantly outperforms other sequential compression methods.

      paper: https://www.merl.com/publications/TR2025-079
  •  
  •  NEWS    MERL Researchers to Present 2 Conference and 11 Workshop Papers at NeurIPS 2024
    Date: December 10, 2024 - December 15, 2024
    Where: Advances in Neural Processing Systems (NeurIPS)
    MERL Contacts: Petros T. Boufounos; Matthew Brand; Ankush Chakrabarty; Anoop Cherian; François Germain; Toshiaki Koike-Akino; Christopher R. Laughman; Jonathan Le Roux; Jing Liu; Suhas Lohit; Tim K. Marks; Yoshiki Masuyama; Kieran Parsons; Kuan-Chuan Peng; Diego Romeres; Pu (Perry) Wang; Ye Wang; Gordon Wichern
    Research Areas: Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Human-Computer Interaction, Information Security
    Brief
    • MERL researchers will attend and present the following papers at the 2024 Advances in Neural Processing Systems (NeurIPS) Conference and Workshops.

      1. "RETR: Multi-View Radar Detection Transformer for Indoor Perception" by Ryoma Yataka (Mitsubishi Electric), Adriano Cardace (Bologna University), Perry Wang (Mitsubishi Electric Research Laboratories), Petros Boufounos (Mitsubishi Electric Research Laboratories), Ryuhei Takahashi (Mitsubishi Electric). Main Conference. https://neurips.cc/virtual/2024/poster/95530

      2. "Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads" by Anoop Cherian (Mitsubishi Electric Research Laboratories), Kuan-Chuan Peng (Mitsubishi Electric Research Laboratories), Suhas Lohit (Mitsubishi Electric Research Laboratories), Joanna Matthiesen (Math Kangaroo USA), Kevin Smith (Massachusetts Institute of Technology), Josh Tenenbaum (Massachusetts Institute of Technology). Main Conference, Datasets and Benchmarks track. https://neurips.cc/virtual/2024/poster/97639

      3. "Probabilistic Forecasting for Building Energy Systems: Are Time-Series Foundation Models The Answer?" by Young-Jin Park (Massachusetts Institute of Technology), Jing Liu (Mitsubishi Electric Research Laboratories), François G Germain (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Gordon Wichern (Mitsubishi Electric Research Laboratories), Navid Azizan (Massachusetts Institute of Technology), Christopher R. Laughman (Mitsubishi Electric Research Laboratories), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories). Time Series in the Age of Large Models Workshop.

      4. "Forget to Flourish: Leveraging Model-Unlearning on Pretrained Language Models for Privacy Leakage" by Md Rafi Ur Rashid (Penn State University), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Shagufta Mehnaz (Penn State University), Ye Wang (Mitsubishi Electric Research Laboratories). Workshop on Red Teaming GenAI: What Can We Learn from Adversaries?

      5. "Spatially-Aware Losses for Enhanced Neural Acoustic Fields" by Christopher Ick (New York University), Gordon Wichern (Mitsubishi Electric Research Laboratories), Yoshiki Masuyama (Mitsubishi Electric Research Laboratories), François G Germain (Mitsubishi Electric Research Laboratories), Jonathan Le Roux (Mitsubishi Electric Research Laboratories). Audio Imagination Workshop.

      6. "FV-NeRV: Neural Compression for Free Viewpoint Videos" by Sorachi Kato (Osaka University), Takuya Fujihashi (Osaka University), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Takashi Watanabe (Osaka University). Machine Learning and Compression Workshop.

      7. "GPT Sonography: Hand Gesture Decoding from Forearm Ultrasound Images via VLM" by Keshav Bimbraw (Worcester Polytechnic Institute), Ye Wang (Mitsubishi Electric Research Laboratories), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories). AIM-FM: Advancements In Medical Foundation Models: Explainability, Robustness, Security, and Beyond Workshop.

      8. "Smoothed Embeddings for Robust Language Models" by Hase Ryo (Mitsubishi Electric), Md Rafi Ur Rashid (Penn State University), Ashley Lewis (Ohio State University), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Kieran Parsons (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories). Safe Generative AI Workshop.

      9. "Slaying the HyDRA: Parameter-Efficient Hyper Networks with Low-Displacement Rank Adaptation" by Xiangyu Chen (University of Kansas), Ye Wang (Mitsubishi Electric Research Laboratories), Matthew Brand (Mitsubishi Electric Research Laboratories), Pu Wang (Mitsubishi Electric Research Laboratories), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories). Workshop on Adaptive Foundation Models.

      10. "Preference-based Multi-Objective Bayesian Optimization with Gradients" by Joshua Hang Sai Ip (University of California Berkeley), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories), Ali Mesbah (University of California Berkeley), Diego Romeres (Mitsubishi Electric Research Laboratories). Workshop on Bayesian Decision-Making and Uncertainty. Lightning talk spotlight.

      11. "TR-BEACON: Shedding Light on Efficient Behavior Discovery in High-Dimensions with Trust-Region-based Bayesian Novelty Search" by Wei-Ting Tang (Ohio State University), Ankush Chakrabarty (Mitsubishi Electric Research Laboratories), Joel A. Paulson (Ohio State University). Workshop on Bayesian Decision-Making and Uncertainty.

      12. "MEL-PETs Joint-Context Attack for the NeurIPS 2024 LLM Privacy Challenge Red Team Track" by Ye Wang (Mitsubishi Electric Research Laboratories), Tsunato Nakai (Mitsubishi Electric), Jing Liu (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Kento Oonishi (Mitsubishi Electric), Takuya Higashi (Mitsubishi Electric). LLM Privacy Challenge. Special Award for Practical Attack.

      13. "MEL-PETs Defense for the NeurIPS 2024 LLM Privacy Challenge Blue Team Track" by Jing Liu (Mitsubishi Electric Research Laboratories), Ye Wang (Mitsubishi Electric Research Laboratories), Toshiaki Koike-Akino (Mitsubishi Electric Research Laboratories), Tsunato Nakai (Mitsubishi Electric), Kento Oonishi (Mitsubishi Electric), Takuya Higashi (Mitsubishi Electric). LLM Privacy Challenge. Won 3rd Place Award.

      MERL members also contributed to the organization of the Multimodal Algorithmic Reasoning (MAR) Workshop (https://marworkshop.github.io/neurips24/). Organizers: Anoop Cherian (Mitsubishi Electric Research Laboratories), Kuan-Chuan Peng (Mitsubishi Electric Research Laboratories), Suhas Lohit (Mitsubishi Electric Research Laboratories), Honglu Zhou (Salesforce Research), Kevin Smith (Massachusetts Institute of Technology), Tim K. Marks (Mitsubishi Electric Research Laboratories), Juan Carlos Niebles (Salesforce AI Research), Petar Veličković (Google DeepMind).
  •  
  •  TALK    [MERL Seminar Series 2024] Di Shi presents talk titled AI-assisted Power Grid Dispatch and Control: Optimization, Safety, and Real-world Demonstrations
    Date & Time: Wednesday, November 20, 2024; 1:00 PM
    Speaker: Di Shi, New Mexico State University
    MERL Host: Hongbo Sun
    Research Areas: Artificial Intelligence, Data Analytics, Optimization
    Abstract
    • This presentation delves into the challenges and advancements in optimizing power system operations through Grid Mind, an innovative, data-driven framework designed to enhance the integration of renewable energy sources. Utilizing advanced learning algorithms, Grid Mind excels in strategic resource allocation and control, significantly improving efficiency and reliability in power systems with high renewable energy penetration. The transformative potential of this AI-assisted technology is highlighted through real-world applications, demonstrating its effectiveness in addressing the complexities of modern power systems. In addition, critical safety considerations and practical deployment challenges are explored, emphasizing the need for robust, secure, and adaptable solutions. This talk also discusses the capabilities of Grid Mind as a distributed, learning-based system optimized for edge devices, marking a significant advancement toward sustainable, safe, and efficient power system operations in an era dominated by renewable energy.
  •  
  •  EVENT    SANE 2024 - Speech and Audio in the Northeast
    Date: Thursday, October 17, 2024
    Location: Google, Cambridge, MA
    MERL Contact: Jonathan Le Roux
    Research Areas: Artificial Intelligence, Machine Learning, Speech & Audio
    Brief
    • SANE 2024, a one-day event gathering researchers and students in speech and audio from the Northeast of the American continent, was held on Thursday October 17, 2024 at Google, in Cambridge, MA.

      It was the 11th edition in the SANE series of workshops, which started in 2012 and is typically held every year alternately in Boston and New York. Since the first edition, the audience has steadily grown, with a new record of 200 participants and 53 posters in 2024.

      SANE 2024 featured invited talks by seven leading researchers from the Northeast as well as from the international community: Quan Wang (Google), Greta Tuckute (MIT), Mark Hamilton (MIT), Bhuvana Ramabhadran (Google), Zhiyao Duan (University of Rochester), and Chris Donahue (Carnegie Mellon University). It also featured a lively poster session with 53 posters.

      SANE 2024 was co-organized by Jonathan Le Roux (MERL) and John R. Hershey (Google). SANE remained a free event thanks to generous sponsorship by Google and MERL.

      Slides and videos of the talks are available from the SANE workshop website.
  •  
  •  NEWS    MERL Papers and Workshops at CVPR 2024
    Date: June 17, 2024 - June 21, 2024
    Where: Seattle, WA
    MERL Contacts: Petros T. Boufounos; Moitreya Chatterjee; Anoop Cherian; Michael J. Jones; Toshiaki Koike-Akino; Jonathan Le Roux; Suhas Lohit; Tim K. Marks; Pedro Miraldo; Jing Liu; Kuan-Chuan Peng; Pu (Perry) Wang; Ye Wang; Matthew Brand
    Research Areas: Artificial Intelligence, Computational Sensing, Computer Vision, Machine Learning, Speech & Audio
    Brief
    • MERL researchers are presenting 5 conference papers, 3 workshop papers, and are co-organizing two workshops at the CVPR 2024 conference, which will be held in Seattle, June 17-21. CVPR is one of the most prestigious and competitive international conferences in computer vision. Details of MERL contributions are provided below.

      CVPR Conference Papers:

      1. "TI2V-Zero: Zero-Shot Image Conditioning for Text-to-Video Diffusion Models" by H. Ni, B. Egger, S. Lohit, A. Cherian, Y. Wang, T. Koike-Akino, S. X. Huang, and T. K. Marks

      This work enables a pretrained text-to-video (T2V) diffusion model to be additionally conditioned on an input image (first video frame), yielding a text+image to video (TI2V) model. Other than using the pretrained T2V model, our method requires no ("zero") training or fine-tuning. The paper uses a "repeat-and-slide" method and diffusion resampling to synthesize videos from a given starting image and text describing the video content.

      Paper: https://www.merl.com/publications/TR2024-059
      Project page: https://merl.com/research/highlights/TI2V-Zero

      2. "Long-Tailed Anomaly Detection with Learnable Class Names" by C.-H. Ho, K.-C. Peng, and N. Vasconcelos

      This work aims to identify defects across various classes without relying on hard-coded class names. We introduce the concept of long-tailed anomaly detection, addressing challenges like class imbalance and dataset variability. Our proposed method combines reconstruction and semantic modules, learning pseudo-class names and utilizing a variational autoencoder for feature synthesis to improve performance in long-tailed datasets, outperforming existing methods in experiments.

      Paper: https://www.merl.com/publications/TR2024-040

      3. "Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling" by X. Liu, Y-W. Tai, C-T. Tang, P. Miraldo, S. Lohit, and M. Chatterjee

      This work presents a new strategy for rendering dynamic scenes from novel viewpoints. Our approach is based on stratifying the scene into regions based on the extent of motion of the region, which is automatically determined. Regions with higher motion are permitted a denser spatio-temporal sampling strategy for more faithful rendering of the scene. Additionally, to the best of our knowledge, ours is the first work to enable tracking of objects in the scene from novel views - based on the preferences of a user, provided by a click.

      Paper: https://www.merl.com/publications/TR2024-042

      4. "SIRA: Scalable Inter-frame Relation and Association for Radar Perception" by R. Yataka, P. Wang, P. T. Boufounos, and R. Takahashi

      Overcoming the limitations on radar feature extraction such as low spatial resolution, multipath reflection, and motion blurs, this paper proposes SIRA (Scalable Inter-frame Relation and Association) for scalable radar perception with two designs: 1) extended temporal relation, generalizing the existing temporal relation layer from two frames to multiple inter-frames with temporally regrouped window attention for scalability; and 2) motion consistency track with a pseudo-tracklet generated from observational data for better object association.

      Paper: https://www.merl.com/publications/TR2024-041

      5. "RILA: Reflective and Imaginative Language Agent for Zero-Shot Semantic Audio-Visual Navigation" by Z. Yang, J. Liu, P. Chen, A. Cherian, T. K. Marks, J. L. Roux, and C. Gan

      We leverage Large Language Models (LLM) for zero-shot semantic audio visual navigation. Specifically, by employing multi-modal models to process sensory data, we instruct an LLM-based planner to actively explore the environment by adaptively evaluating and dismissing inaccurate perceptual descriptions.

      Paper: https://www.merl.com/publications/TR2024-043

      CVPR Workshop Papers:

      1. "CoLa-SDF: Controllable Latent StyleSDF for Disentangled 3D Face Generation" by R. Dey, B. Egger, V. Boddeti, Y. Wang, and T. K. Marks

      This paper proposes a new method for generating 3D faces and rendering them to images by combining the controllability of nonlinear 3DMMs with the high fidelity of implicit 3D GANs. Inspired by StyleSDF, our model uses a similar architecture but enforces the latent space to match the interpretable and physical parameters of the nonlinear 3D morphable model MOST-GAN.

      Paper: https://www.merl.com/publications/TR2024-045

      2. “Tracklet-based Explainable Video Anomaly Localization” by A. Singh, M. J. Jones, and E. Learned-Miller

      This paper describes a new method for localizing anomalous activity in video of a scene given sample videos of normal activity from the same scene. The method is based on detecting and tracking objects in the scene and estimating high-level attributes of the objects such as their location, size, short-term trajectory and object class. These high-level attributes can then be used to detect unusual activity as well as to provide a human-understandable explanation for what is unusual about the activity.

      Paper: https://www.merl.com/publications/TR2024-057

      MERL co-organized workshops:

      1. "Multimodal Algorithmic Reasoning Workshop" by A. Cherian, K-C. Peng, S. Lohit, M. Chatterjee, H. Zhou, K. Smith, T. K. Marks, J. Mathissen, and J. Tenenbaum

      Workshop link: https://marworkshop.github.io/cvpr24/index.html

      2. "The 5th Workshop on Fair, Data-Efficient, and Trusted Computer Vision" by K-C. Peng, et al.

      Workshop link: https://fadetrcv.github.io/2024/

      3. "SuperLoRA: Parameter-Efficient Unified Adaptation for Large Vision Models" by X. Chen, J. Liu, Y. Wang, P. Wang, M. Brand, G. Wang, and T. Koike-Akino

      This paper proposes a generalized framework called SuperLoRA that unifies and extends different variants of low-rank adaptation (LoRA). Introducing new options with grouping, folding, shuffling, projection, and tensor decomposition, SuperLoRA offers high flexibility and demonstrates superior performance up to 10-fold gain in parameter efficiency for transfer learning tasks.

      Paper: https://www.merl.com/publications/TR2024-062
  •  
  •  NEWS    MERL researchers presenting four papers and organizing the VLAR-SMART101 Workshop at ICCV 2023
    Date: October 2, 2023 - October 6, 2023
    Where: Paris/France
    MERL Contacts: Moitreya Chatterjee; Anoop Cherian; Michael J. Jones; Toshiaki Koike-Akino; Suhas Lohit; Tim K. Marks; Pedro Miraldo; Kuan-Chuan Peng; Ye Wang
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Brief
    • MERL researchers are presenting 4 papers and organizing the VLAR-SMART-101 workshop at the ICCV 2023 conference, which will be held in Paris, France October 2-6. ICCV is one of the most prestigious and competitive international conferences in computer vision. Details are provided below.

      1. Conference paper: “Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional Image Synthesis,” by Nithin Gopalakrishnan Nair, Anoop Cherian, Suhas Lohit, Ye Wang, Toshiaki Koike-Akino, Vishal Patel, and Tim K. Marks

      Conditional generative models typically demand large annotated training sets to achieve high-quality synthesis. As a result, there has been significant interest in plug-and-play generation, i.e., using a pre-defined model to guide the generative process. In this paper, we introduce Steered Diffusion, a generalized framework for fine-grained photorealistic zero-shot conditional image generation using a diffusion model trained for unconditional generation. The key idea is to steer the image generation of the diffusion model during inference via designing a loss using a pre-trained inverse model that characterizes the conditional task. Our model shows clear qualitative and quantitative improvements over state-of-the-art diffusion-based plug-and-play models, while adding negligible computational cost.

      2. Conference paper: "BANSAC: A dynamic BAyesian Network for adaptive SAmple Consensus," by Valter Piedade and Pedro Miraldo

      We derive a dynamic Bayesian network that updates individual data points' inlier scores while iterating RANSAC. At each iteration, we apply weighted sampling using the updated scores. Our method works with or without prior data point scorings. In addition, we use the updated inlier/outlier scoring for deriving a new stopping criterion for the RANSAC loop. Our method outperforms the baselines in accuracy while needing less computational time.

      3. Conference paper: "Robust Frame-to-Frame Camera Rotation Estimation in Crowded Scenes," by Fabien Delattre, David Dirnfeld, Phat Nguyen, Stephen Scarano, Michael J. Jones, Pedro Miraldo, and Erik Learned-Miller

      We present a novel approach to estimating camera rotation in crowded, real-world scenes captured using a handheld monocular video camera. Our method uses a novel generalization of the Hough transform on SO3 to efficiently find the camera rotation most compatible with the optical flow. Because the setting is not addressed well by other data sets, we provide a new dataset and benchmark, with high-accuracy and rigorously annotated ground truth on 17 video sequences. Our method is more accurate by almost 40 percent than the next best method.

      4. Workshop paper: "Tensor Factorization for Leveraging Cross-Modal Knowledge in Data-Constrained Infrared Object Detection" by Manish Sharma*, Moitreya Chatterjee*, Kuan-Chuan Peng, Suhas Lohit, and Michael Jones

      While state-of-the-art object detection methods for RGB images have reached some level of maturity, the same is not true for Infrared (IR) images. The primary bottleneck towards bridging this gap is the lack of sufficient labeled training data in the IR images. Towards addressing this issue, we present TensorFact, a novel tensor decomposition method which splits the convolution kernels of a CNN into low-rank factor matrices with fewer parameters. This compressed network is first pre-trained on RGB images and then augmented with only a few parameters. This augmented network is then trained on IR images, while freezing the weights trained on RGB. This prevents it from over-fitting, allowing it to generalize better. Experiments show that our method outperforms state-of-the-art.

      5. “Vision-and-Language Algorithmic Reasoning (VLAR) Workshop and SMART-101 Challenge” by Anoop Cherian,  Kuan-Chuan Peng, Suhas Lohit, Tim K. Marks, Ram Ramrakhya, Honglu Zhou, Kevin A. Smith, Joanna Matthiesen, and Joshua B. Tenenbaum

      MERL researchers along with researchers from MIT, GeorgiaTech, Math Kangaroo USA, and Rutgers University are jointly organizing a workshop on vision-and-language algorithmic reasoning at ICCV 2023 and conducting a challenge based on the SMART-101 puzzles described in the paper: Are Deep Neural Networks SMARTer than Second Graders?. A focus of this workshop is to bring together outstanding faculty/researchers working at the intersections of vision, language, and cognition to provide their opinions on the recent breakthroughs in large language models and artificial general intelligence, as well as showcase their cutting edge research that could inspire the audience to search for the missing pieces in our quest towards solving the puzzle of artificial intelligence.

      Workshop link: https://wvlar.github.io/iccv23/
  •  
  •  AWARD    MERL’s Paper on Wi-Fi Sensing Earns Top 3% Paper Recognition at ICASSP 2023, Selected as a Best Student Paper Award Finalist
    Date: June 9, 2023
    Awarded to: Cristian J. Vaca-Rubio, Pu Wang, Toshiaki Koike-Akino, Ye Wang, Petros Boufounos and Petar Popovski
    MERL Contacts: Petros T. Boufounos; Toshiaki Koike-Akino; Pu (Perry) Wang; Ye Wang
    Research Areas: Artificial Intelligence, Communications, Computational Sensing, Dynamical Systems, Machine Learning, Signal Processing
    Brief
    • A MERL Paper on Wi-Fi sensing was recognized as a Top 3% Paper among all 2709 accepted papers at the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023). Co-authored by Cristian Vaca-Rubio and Petar Popovski from Aalborg University, Denmark, and MERL researchers Pu Wang, Toshiaki Koike-Akino, Ye Wang, and Petros Boufounos, the paper "MmWave Wi-Fi Trajectory Estimation with Continous-Time Neural Dynamic Learning" was also a Best Student Paper Award finalist.

      Performed during Cristian’s stay at MERL first as a visiting Marie Skłodowska-Curie Fellow and then as a full-time intern in 2022, this work capitalizes on standards-compliant Wi-Fi signals to perform indoor localization and sensing. The paper uses a neural dynamic learning framework to address technical issues such as low sampling rate and irregular sampling intervals.

      ICASSP, a flagship conference of the IEEE Signal Processing Society (SPS), was hosted on the Greek island of Rhodes from June 04 to June 10, 2023. ICASSP 2023 marked the largest ICASSP in history, boasting over 4000 participants and 6128 submitted papers, out of which 2709 were accepted.
  •  
  •  TALK    [MERL Seminar Series 2023] Prof. Mark Ku presents talk titled A beginner’s guide to quantum sensing illustrated with nitrogen vacancy centers in diamond
    Date & Time: Wednesday, May 17, 2023; 1:00 PM
    Speaker: Mark Ku, The University of Delaware
    MERL Host: Chungwei Lin
    Research Areas: Applied Physics, Computational Sensing
    Abstract
    • Quantum technology holds potential for revolutionizing how information is processed, transmitted, and acquired. While quantum computation and quantum communication have been among the well-known examples of quantum technology, it is increasingly recognized that quantum sensing is the application with the most potential for immediate wide-spread practical utilization. In this talk, I will provide an overview of the field of quantum sensing with nitrogen vacancy (NV) centers in diamond as a specific example. I will introduce the physical system of NV and describe some basic quantum sensing protocols. Then, I will present some state-of-the-art and examples where quantum sensors such as NV can accomplish what traditional sensors cannot. Lastly, I will discuss potential future directions in the area of NV quantum sensing.
  •  
  •  NEWS    Jonathan Le Roux discusses MERL's audio source separation work on popular machine learning podcast
    Date: January 24, 2022
    Where: The TWIML AI Podcast
    MERL Contact: Jonathan Le Roux
    Research Areas: Artificial Intelligence, Machine Learning, Speech & Audio
    Brief
    • MERL Speech & Audio Senior Team Leader Jonathan Le Roux was featured in an extended interview on the popular TWIML AI Podcast, presenting MERL's work towards solving the "cocktail party problem". Humans have the extraordinary ability to focus on particular sounds of interest within a complex acoustic scene, such as a cocktail party. MERL's Speech & Audio Team has been at the forefront of the field's effort to develop algorithms giving machines similar abilities. Jonathan talked with host Sam Charrington about the group's decade-long journey on this topic, from early pioneering work using deep learning for speech enhancement and speech separation, to recent works on weakly-supervised separation, hierarchical sound separation, as well as the separation of real-world soundtracks into speech, music, and sound effects (aka the "cocktail fork problem").

      The TWIML AI podcast, formerly known as This Week in Machine Learning & AI, was created in 2016 and is followed by more than 10,000 subscribers on Youtube and Twitter. Jonathan's interview marks the 555th episode of the podcast.
  •  
  •  NEWS    MERL becomes new sponsor of two prestigious IEEE Technical Field Awards in Signal Processing
    Date: July 9, 2021
    MERL Contacts: Petros T. Boufounos; Jonathan Le Roux; Philip V. Orlik; Anthony Vetro
    Research Areas: Signal Processing, Speech & Audio
    Brief
    • Mitsubishi Electric Research Laboratories (MERL) has become the new sponsor of two prestigious IEEE Technical Field Awards in Signal Processing, the IEEE James L. Flanagan Speech and Audio Processing Award and the IEEE Fourier Award for Signal Processing, for the years 2022-2031. "MERL is proud to support the recognition of outstanding contributions to signal processing by sponsoring both the IEEE James L. Flanagan Speech and Audio Processing Award and the IEEE Fourier Award for Signal Processing. These awards celebrate the creativity and innovation in the field that touch many aspects of our lives and drive our society forward" said Dr. Anthony Vetro, VP and Director at MERL.

      The IEEE Board of Directors established the IEEE James L. Flanagan Speech and Audio Processing Award in 2002 for outstanding contributions to the advancement of speech and/or audio signal processing, while the IEEE Fourier Award for Signal Processing was established in 2012 for outstanding contribution to the advancement of signal processing, other than in the areas of speech and audio processing. Both awards have since recognized the contributions of some of the most renowned pioneers and leaders in their respective fields.

      By underwriting these IEEE Technical Field Awards, MERL continues to make a mark by supporting the advancement of technology that makes lasting changes in the world.
  •  
  •  NEWS    MERL researchers presenting four papers and organizing two workshops at CVPR 2020 conference
    Date: June 14, 2020 - June 19, 2020
    MERL Contacts: Anoop Cherian; Michael J. Jones; Toshiaki Koike-Akino; Tim K. Marks; Kuan-Chuan Peng; Ye Wang
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Brief
    • MERL researchers are presenting four papers (two oral papers and two posters) and organizing two workshops at the IEEE/CVF Computer Vision and Pattern Recognition (CVPR 2020) conference.

      CVPR 2020 Orals with MERL authors:
      1. "Dynamic Multiscale Graph Neural Networks for 3D Skeleton Based Human Motion Prediction," by Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yanfeng Wang, Qi Tian
      2. "Collaborative Motion Prediction via Neural Motion Message Passing," by Yue Hu, Siheng Chen, Ya Zhang, Xiao Gu

      CVPR 2020 Posters with MERL authors:
      3. "LUVLi Face Alignment: Estimating Landmarks’ Location, Uncertainty, and Visibility Likelihood," by Abhinav Kumar, Tim K. Marks, Wenxuan Mou, Ye Wang, Michael Jones, Anoop Cherian, Toshiaki Koike-Akino, Xiaoming Liu, Chen Feng
      4. "MotionNet: Joint Perception and Motion Prediction for Autonomous Driving Based on Bird’s Eye View Maps," by Pengxiang Wu, Siheng Chen, Dimitris N. Metaxas

      CVPR 2020 Workshops co-organized by MERL researchers:
      1. Fair, Data-Efficient and Trusted Computer Vision
      2. Deep Declarative Networks.
  •  
  •  AWARD    MERL Researchers win Best Paper Award at ICCV 2019 Workshop on Statistical Deep Learning in Computer Vision
    Date: October 27, 2019
    Awarded to: Abhinav Kumar, Tim K. Marks, Wenxuan Mou, Chen Feng, Xiaoming Liu
    MERL Contact: Tim K. Marks
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Brief
    • MERL researcher Tim Marks, former MERL interns Abhinav Kumar and Wenxuan Mou, and MERL consultants Professor Chen Feng (NYU) and Professor Xiaoming Liu (MSU) received the Best Oral Paper Award at the IEEE/CVF International Conference on Computer Vision (ICCV) 2019 Workshop on Statistical Deep Learning in Computer Vision (SDL-CV) held in Seoul, Korea. Their paper, entitled "UGLLI Face Alignment: Estimating Uncertainty with Gaussian Log-Likelihood Loss," describes a method which, given an image of a face, estimates not only the locations of facial landmarks but also the uncertainty of each landmark location estimate.
  •  
  •  NEWS    Turbulent flow paper selected as "Editors Suggestion" in journal Physical Review Fluids
    Date: January 11, 2019
    Where: PHYSICAL REVIEW FLUIDS, 4, 013801 – Published 11 January 2019
    Research Areas: Control, Dynamical Systems
    Brief
    • The journal Physical Review Fluids has recently instituted "...a service to our readers, we are formally marking a small number of papers published in Physical Review Fluids that the editors and referees find of particular interest, importance, or clarity." The following paper with MERL authors Saleh Nabi and Piyush Grover was so honored in the January 2019 issue: "Reduced-order modeling of fully turbulent buoyancy-driven flows using the Green's function method.".
  •  
  •  NEWS    Tim Marks to give invited Keynote talk at AMFG 2017 Workshop, at ICCV 2017
    Date: October 28, 2017
    Where: Venice, Italy
    MERL Contact: Tim K. Marks
    Research Area: Machine Learning
    Brief
    • MERL Senior Principal Research Scientist Tim K. Marks will give an invited keynote talk at the 2017 IEEE Workshop on Analysis and Modeling of Faces and Gestures (AMFG 2017). The workshop will take place On October 28, 2017, at the International Conference on Computer Vision (ICCV 2017) in Venice, Italy.
  •  
  •  EVENT    Tim Marks to give lunch talk at Face and Gesture 2017 conference
    Date: Thursday, June 1, 2017
    Location: IEEE Conference on Automatic Face and Gesture Recognition (FG 2017), Washington, DC
    Speaker: Tim K. Marks
    MERL Contact: Tim K. Marks
    Research Area: Machine Learning
    Brief
    • MERL Senior Principal Research Scientist Tim K. Marks will give the invited lunch talk on Thursday, June 1, at the IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017). The talk is entitled "Robust Real-Time 3D Head Pose and 2D Face Alignment.".
  •  
  •  NEWS    MERL Researcher Tim Marks presents an invited talk at MIT Lincoln Laboratory
    Date: April 27, 2017
    Where: Lincoln Laboratory, Massachusetts Institute of Technology
    MERL Contact: Tim K. Marks
    Research Area: Machine Learning
    Brief
    • MERL researcher Tim K. Marks presented an invited talk as part of the MIT Lincoln Laboratory CORE Seminar Series on Biometrics. The talk was entitled "Robust Real-Time 2D Face Alignment and 3D Head Pose Estimation."

      Abstract: Head pose estimation and facial landmark localization are key technologies, with widespread application areas including biometrics and human-computer interfaces. This talk describes two different robust real-time face-processing methods, each using a different modality of input image. The first part of the talk describes our system for 3D head pose estimation and facial landmark localization using a commodity depth sensor. The method is based on a novel 3D Triangular Surface Patch (TSP) descriptor, which is viewpoint-invariant as well as robust to noise and to variations in the data resolution. This descriptor, combined with fast nearest-neighbor lookup and a joint voting scheme, enable our system to handle arbitrary head pose and significant occlusions. The second part of the talk describes our method for face alignment, which is the localization of a set of facial landmark points in a 2D image or video of a face. Face alignment is particularly challenging when there are large variations in pose (in-plane and out-of-plane rotations) and facial expression. To address this issue, we propose a cascade in which each stage consists of a Mixture of Invariant eXperts (MIX), where each expert learns a regression model that is specialized to a different subset of the joint space of pose and expressions. We also present a method to include deformation constraints within the discriminative alignment framework, which makes the algorithm more robust. Both our 3D head pose and 2D face alignment methods outperform the previous results on standard datasets. If permitted, I plan to end the talk with a live demonstration.
  •  
  •  NEWS    MERL researcher Tim Marks presents invited talk at University of Utah
    Date: April 10, 2017
    Where: University of Utah School of Computing
    MERL Contact: Tim K. Marks
    Research Area: Machine Learning
    Brief
    • MERL researcher Tim K. Marks presented an invited talk at the University of Utah School of Computing, entitled "Action Detection from Video and Robust Real-Time 2D Face Alignment."

      Abstract: The first part of the talk describes our multi-stream bi-directional recurrent neural network for action detection from video. In addition to a two-stream convolutional neural network (CNN) on full-frame appearance (images) and motion (optical flow), our system trains two additional streams on appearance and motion that have been cropped to a bounding box from a person tracker. To model long-term temporal dynamics within and between actions, the multi-stream CNN is followed by a bi-directional Long Short-Term Memory (LSTM) layer. Our method outperforms the previous state of the art on two action detection datasets: the MPII Cooking 2 Dataset, and a new MERL Shopping Dataset that we have made available to the community. The second part of the talk describes our method for face alignment, which is the localization of a set of facial landmark points in a 2D image or video of a face. Face alignment is particularly challenging when there are large variations in pose (in-plane and out-of-plane rotations) and facial expression. To address this issue, we propose a cascade in which each stage consists of a Mixture of Invariant eXperts (MIX), where each expert learns a regression model that is specialized to a different subset of the joint space of pose and expressions. We also present a method to include deformation constraints within the discriminative alignment framework, which makes the algorithm more robust. Our face alignment system outperforms the previous results on standard datasets. The talk will end with a live demo of our face alignment system.
  •  
  •  EVENT    MERL hosts Boston Imaging and Vision Meetup
    Date & Time: Tuesday, January 17, 2017; 6:00 pm
    Location: 201 Broadway, Cambridge, MA
    Speaker: Tim Marks, Esra Cansizoglu and Carl Vondrick, MERL and MIT
    Research Area: Computer Vision
    Brief
    • MERL was pleased to host the Boston Imaging and Vision Meetup held on January 17. The meetup is an informal gathering of people interested in the field of computer imaging and vision. According to the group's website "the meetup provides an opportunity for the image processing/computer vision community to network, socialize and learn". The event held at MERL featured three speakers, Tim Marks and Esra Cansizoglu from MERL, as well as Carl Vondrick, an MIT CS graduate student in the group of Prof. Antonio Torralba. Roughly 70 people attended to eat pizza, hear the speakers and network.
  •  
  •  EVENT    MERL to celebrate 25 years of innovation
    Date: Thursday, June 2, 2016
    Location: Norton's Woods Conference Center at American Academy of Arts & Sciences, Cambridge, MA
    MERL Contacts: Elizabeth Phillips; Anthony Vetro
    Brief
    • A celebration event to mark MERL's 25th anniversary will be held on Thursday, June 2 at the Norton's Woods Conference Center at the American Academy of Arts & Sciences in Cambridge, MA. This event will feature keynote talks, panel sessions, and a research showcase. The event itself is invitation-only, but videos and other highlights will be made available online. Further details about the program can be obtained at the link below.
  •  
  •  AWARD    2015 IEEE Signal Processing Society Best Paper Award
    Date: December 1, 2015
    Awarded to: Mark A. Davenport, Petros T. Boufounos, Michael B. Wakin and Richard G. Baraniuk
    MERL Contact: Petros T. Boufounos
    Research Area: Computational Sensing
    Brief
    • Petros Boufounos is a recipient of the 2015 IEEE Signal Processing Society Best Paper Award for the paper that he co-authored with Mark A. Davenport, Michael B. Wakin and Richard G. Baraniuk on "Signal Processing with Compressive Measurements" which was published in the April 2010 issue of IEEE Journal of Selected Topics in Signal Processing. The Best Paper Award honors the author(s) of a paper of exceptional merit dealing with a subject related to the Society's technical scope, and appearing in one of the Society's solely owned transactions or the Journal of Selected Topics in Signal Processing. Eligibility is based on a five-year window: for example, for the 2015 Award, the paper must have appeared in one of the Society's Transactions between January 1, 2010 and December 31, 2014.
      .
  •  
  •  NEWS    The International Journal of Robotics Research: publication by Yuichi Taguchi, Tim K. Marks, C. Oncel Tuzel, Ming-Yu Liu and others
    Date: May 8, 2012
    Where: The International Journal of Robotics Research
    MERL Contact: Tim K. Marks
    Research Area: Computer Vision
    Brief
    • The article "Fast Object Localization and Pose Estimation in Heavy Clutter for Robotic Bin Picking" by Liu, M.-Y., Tuzel, O., Veeraraghavan, A., Taguchi, Y., Marks, T.K. and Chellappa, R. was published in The International Journal of Robotics Research.
  •  
  •  NEWS    ICCV 2011: publication by Michael J. Jones, Tim K. Marks and others
    Date: November 6, 2011
    Where: IEEE International Conference on Computer Vision (ICCV)
    MERL Contacts: Tim K. Marks; Michael J. Jones
    Brief
    • The paper "Fully Automatic Pose-Invariant Face Recognition via 3D Pose Normalization" by Asthana, A., Marks, T.K., Jones, M.J., Tieu, K.H. and Rohith, M. was presented at the IEEE International Conference on Computer Vision (ICCV).
  •  
  •  TALK    Analysing Digital Music
    Date & Time: Thursday, October 20, 2011; 2:20 PM
    Speaker: Prof. Mark Plumbley, Queen Mary, London
    MERL Host: Jonathan Le Roux
    Research Area: Speech & Audio
  •  
  •  EVENT    Audio and Music Signal Processing Mini-Symposium
    Date & Time: Thursday, October 20, 2011; 2:00 PM -5:00 PM
    Location: MERL
    MERL Contact: Jonathan Le Roux
    Research Area: Speech & Audio
    Brief
    • MERL is hosting a mini-symposium on audio and music signal processing, with three talks by eminent researchers in the field: Prof. Mark Plumbley, Dr. Cedric Fevotte and Prof. Nobutaka Ono.
  •  
  •  NEWS    IROS 2011: publication by Yuichi Taguchi, John R. Hershey and Tim K. Marks
    Date: September 25, 2011
    Where: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
    MERL Contact: Tim K. Marks
    Brief
    • The paper "Entropy-Based Motion Selection for Touch-Based Registration Using Rao-Blackwellized Particle Filtering" by Taguchi, Y., Marks, T.K. and Hershey, J.R. was presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
  •