Internship Openings

80 Intern positions are currently open.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Qualified applicants for MERL internships are individuals who have or can obtain full authorization to work in the U.S. and do not require export licenses to receive information about the projects they will be exposed to at MERL. The U.S. government prohibits the release of information without an export license to citizens of several countries, including, without limitation, Cuba, Iran, North Korea, Sudan and Syria (Country Groups E:1 and E:2 of Part 740, Supplement 1, of the U.S. Export Administration Regulations).

Rising to the challenges of COVID-19

The COVID pandemic has impacted every aspect of life-how we live, work, and interact. At MERL, we are committed to maintaining our internship program through these challenging times.

MERL continues to actively seek candidates for research internships -- some of the posted positions are immediately available, while others target the summer of 2021. Please consider applying for positions of interest. Our researchers will follow up to schedule an interview by phone or video conference for qualified candidates.

Due to the situation with the COVID-19 pandemic, our current internships are mostly remote. Next summer we hope the situation will be better and our internships will be at MERL, but if it is not, most internships will continue to be remote. However, some of the internships require onsite work. Please check for any specific requirements for onsite work in the job description.


  • CV1570: Health monitoring from video

    • MERL is seeking a highly motivated intern to conduct original research in the area of monitoring vital signs, such as heart rate and heart rate variability, from video of a person. The successful candidate will collaborate with MERL researchers to derive and implement new models, collect data, conduct experiments, and prepare results for publication. The candidate should be a PhD student in computer vision with a strong publication record and experience in computer vision, signal processing, machine learning, and health monitoring. Strong programming skills (Python, Matlab, C/C++, etc.) are expected.

    • Research Areas: Computer Vision, Machine Learning, Signal Processing
    • Host: Tim Marks
    • Apply Now
  • CV1477: Equivariant Neural Networks for Computer Vision

    • MERL is seeking an intern to conduct research in the area of equivariant neural networks for applications in computer vision. The ideal candidate is a senior PhD student with extensive experience in deep learning and computer vision and a good publication record at top-tier venues. Prior knowledge and experience with equivariant neural networks are strongly preferred. Very good Python and Pytorch/Tensorflow skills are required. Publication of results in conference proceedings and journals is expected. The expected duration of the internship is 3 months and the start date is flexible.

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    • Host: Suhas Lohit
    • Apply Now
  • CV1534: Video Anomaly Detection

    • MERL is looking for a self-motivated intern to work on the problem of video anomaly detection. The intern will help to develop new ideas for improving the state of the art in detecting anomalous activity in videos. The ideal candidate would be a Ph.D. student with a strong background in machine learning and computer vision and some experience with video anomaly detection in particular. Proficiency in Python programming and Pytorch/Tensorflow is necessary. You are expected to collaborate with MERL researchers to develop algorithms and prepare manuscripts for scientific publications. The internship is for 3 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computer Vision, Machine Learning
    • Host: Mike Jones
    • Apply Now
  • CV1541: Computer Vision for Robotic Manipulation

    • MERL is looking for a highly motivated and qualified intern to work on computer vision for robotic manipulation. The ideal candidate would be a current Ph.D. student with a strong background in computer vision, deep learning, and/or robotics. There are several available topics for consideration including learning for object manipulation, grasp detection and regrasping, pose estimation, and intent recognition for human-robot interaction. The internship requires development of novel algorithms which can be implemented and evaluated on a robotic test-bed. Experience in working with a physics engine simulator like Mujoco, pyBullet, or Gazebo is required. Proficiency in Python programming is necessary and experience with ROS is a plus. Successful candidate will collaborate with MERL researchers and publication of the relevant results is expected. Start date is flexible and expected duration of the internship is 3-4 months. Interested candidates are encouraged to apply with their recent CV and list of publications in related topics. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computer Vision, Machine Learning, Robotics
    • Host: Siddarth Jain
    • Apply Now
  • CV1553: Graph Representations for Action Recognition

    • MERL is looking for a self-motivated intern to work on problems at the intersection of video understanding and graph representation learning for solving action recognition problems. The ideal candidate would be a senior year (>=3) PhD student with a strong mathematical background in machine learning and computer vision and who has published at least one paper in a top-tier machine learning or computer vision venue (NIPS/CVPR/ECCV/ICCV/ICML/PAMI etc.). The candidate must have prior experience in using deep learning methods for video understanding (such as action recognition, scene graph representations, etc.) and language models (such as in visual question answering or captioning). Proficiency in Python and flexibility in using different deep learning software (such as Pytorch) is expected. The internship is for 3 months with flexible start date. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    • Host: Anoop Cherian
    • Apply Now
  • CV1552: Multimodal Reasoning

    • MERL is looking for a self-motivated intern to work on problems at the intersection of video understanding, audio processing, and language models. The ideal candidate would be a PhD student with a strong mathematical background in machine learning and computer vision. The candidate must have prior experience in using deep learning methods for image and video representations (such as using scene graphs) and deep audio analysis (such as source separation, localization, etc.). Proficiency in Python and flexibility in using different deep learning software (especially Pytorch) is expected. The intern is expected to collaborate with computer vision and speech teams at MERL to develop algorithms and prepare manuscripts for scientific publications. The internship is for 3 months with flexible start date. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
    • Host: Anoop Cherian
    • Apply Now
  • CV1535: Exploring Kervolutional Neural Networks

    • MERL is seeking an intern to conduct research in the area of neural networks with nonlinear kernel activation functions (kervolutional networks) for applications in computer vision. The ideal candidate is a PhD student with experience in deep learning and computer vision and a strong publication record at top-tier venues. Prior experience in the design of novel network architectures and knowledge of kervolutional networks is strongly preferred. Very good Python and Pytorch/Tensorflow skills are required. Publication of results in conference proceedings and journals is expected. The expected duration of the internship is 3 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computer Vision, Machine Learning
    • Host: Mike Jones
    • Apply Now
  • CV1548: Robotic manipulation using tactile perception

    • The Computer Vision group at MERL is offering an internship opportunity to a highly skilled PhD student to work on robotic manipulation using multimodal perception. Candidates should have a solid understanding of contact mechanics, path planning and dexterous manipulation. The intern will deploy the algorithms on physical robots. Strong programming skills are required, including MuJoCo, ROS, C++, Python. Duration and start dates are flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computer Vision, Robotics
    • Host: Radu Corcodel
    • Apply Now
  • CV1569: Robot learning from videos of human demonstrations

    • MERL is looking for a highly motivated and qualified intern to work on developing algorithms for robot learning from videos of human demonstrations. The ideal candidate would be a current Ph.D. student with a strong background in computer vision, deep learning, and robotics. Familiarity with imitation learning, learning from demonstrations (LfD), reinforcement learning, and machine learning for robotics will be valued. Proficiency in Python programming is necessary and experience in working with a physics engine simulator like Mujoco or pyBullet is a plus. A successful candidate will collaborate with MERL researchers and publication of the relevant results is expected. Start date is flexible and the expected duration of the internship is 3-4 months. Interested candidates are encouraged to apply with their recent CV and list of publications in related topics. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Robotics
    • Host: Jeroen van Baar
    • Apply Now
  • CV1546: Vibration analysis in video sequences

    • MERL is looking for a self-motivated intern to work on vibration analysis in video sequences. The ideal candidate would be a Ph.D. student with a strong background in machine learning, optimization and computer vision. Experience in computational photography and MATLAB/Python is a plus. You are expected to collaborate with MERL researchers to develop algorithms and prepare manuscripts for scientific publications. The internship is for a minimum of 3 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computer Vision, Machine Learning, Optimization
    • Host: Jeroen van Baar
    • Apply Now
  • CV1567: Generative Adversarial Networks (GANs) for 3D face generation

    • MERL is seeking a highly motivated intern to conduct original research in the area of generative adversarial networks for realistic 3D face generation. The successful candidate will collaborate with MERL researchers to design and implement new models, conduct experiments, and prepare results for publication. The candidate should be a PhD student in computer vision with experience in GANs and related deep learning methods, as well as good general knowledge in machine learning and a strong publication record. Previous experience with 3D face models and video generation is preferred. Strong programming skills in Python and flexibility working across various deep learning platforms (e.g., PyTorch and TensorFlow) are expected.

    • Research Areas: Computer Vision, Machine Learning
    • Host: Tim Marks
    • Apply Now
  • CV1568: Uncertainty Estimation in 3D Face Landmark Tracking

    • We are seeking a highly motivated intern to conduct original research extending MERL's work on uncertainty estimation in face landmark localization (the LUVLi model) to the domains of 3D faces and video sequences. The successful candidate will collaborate with MERL researchers to design and implement new models, conduct experiments, and prepare results for publication. The candidate should be a PhD student in computer vision and machine learning with a strong publication record. Experience in deep learning-based face landmark estimation, video tracking, and 3D face modeling is preferred. Strong programming skills, experience developing and implementing new models in deep learning platforms such as PyTorch, and broad knowledge of machine learning and deep learning methods are expected.

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    • Host: Tim Marks
    • Apply Now
  • CV1545: Multi-modal Perception for Robotic Tool Manipulation

    • MERL is looking for a self-motivated intern to work on multi-modal perception for robotic tool manipulation. The intern will help to develop new ideas for improving the state of the art. The ideal candidate would be a Ph.D. student with a strong background in machine learning and computer vision. Experience in robotics, reinforcement learning and physics engines (MuJoCo) is desired. Proficiency in Python programming and Pytorch/Tensorflow is required. You are expected to collaborate with MERL researchers to develop algorithms and prepare manuscripts for scientific publications. The internship is for a minimum of 3 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computer Vision, Machine Learning, Robotics
    • Host: Jeroen van Baar
    • Apply Now
  • CV1540: Computer Vision for Biased or Scarce Data

    • MERL is looking for a self-motivated intern to work on data scarcity and bias issues for computer vision. The topics in the scope include (but not limited to): domain adaptation, generative modeling, transfer/low-shot/unsupervised learning, multi-model or multi-modal fusion or distillation under limited data, etc. The ideal candidate would be a PhD student with a strong background in computer vision and machine learning. Proficiency in Python programming and familiarity in at least one deep learning framework are necessary. The ideal candidate is expected to collaborate with MERL researchers to develop algorithms and prepare manuscripts for scientific publications. The duration of the internship is ideally to be at least 3 months with a flexible start date. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    • Host: Kuan-Chuan Peng
    • Apply Now
  • MD1406: Numerical Analysis of Electric Machines

    • MERL is seeking a motivated and qualified intern to conduct research in the design, modeling and optimization of electrical machines. The ideal candidate should have solid backgrounds in electromagnetic theory, electric machine design, and numerical modeling techniques (including model reduction), research experiences in electric, magnetic, and thermal modeling and analysis of electrical machines, and demonstrated capability to publish results in leading conferences/journals. Experience with ANSYS, COMSOL, and optimization techniques is a strong plus. Senior Ph.D. students in electrical or mechanical engineering with related expertise are encouraged to apply. Start date for this internship is flexible and the duration is 3-6 months.

    • Research Areas: Dynamical Systems, Multi-Physical Modeling, Optimization
    • Host: Bingnan Wang
    • Apply Now
  • MD1505: Machine Learning for Microwave Circuit Intelligent Design

    • MERL is looking for a highly motivated, and qualified individual to join our internship program of exploring machine learing for microwave circuit intelligent design research. The ideal candidate should be a senior Ph.D. student with rich experience in machine learning/reinforcement learning. Knowledge of optimization, RF/Microwave integrated circuits, stochastic signal processing, and python programming skills are required. Duration is 3-6 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Electronic and Photonic Devices, Machine Learning
    • Host: Rui Ma
    • Apply Now
  • MD1300: Compiler Optimizations for Linear Algebra Kernels

    • MERL is looking for a highly motivated individual to work on automatic, compiler based techniques for optimizing linear algebra kernels. The ideal candidate is a Ph.D. student in computer science with extensive experience in compiler design and source code optimization techniques. In particular, the successful candidate will have a strong working knowledge of polyhedral optimization techniques, the LLVM compiler, and Polly. Strong C/C++ skills and knowledge of LLVM at the source level are required. Publication of results in conference proceedings and journals is expected. The expected duration of the internship is 3 months and the start date is flexible.

    • Research Areas: Control, Machine Learning, Optimization
    • Host: Abraham Goldsmith
    • Apply Now
  • MD1480: Vehicle Motion Planning in Dynamic Environments

    • MERL is seeking a highly skilled and self-motivated intern to work on vehicle motion planning in dynamic environments. The ideal candidate should have solid backgrounds in path/motion planning, estimation/prediction, and scheduling of dynamical systems. Excellent coding skill and strong publication records are necessary. Senior Ph.D. students in control, computer science, robotics, or related areas are encouraged to apply. Start date for this internship is flexible, and the expected duration is about 3 months.

    • Research Areas: Control, Robotics
    • Host: Yebin Wang
    • Apply Now
  • MD1381: Electric Motor Design

    • MERL is seeking a motivated and qualified individual to conduct research in design, modeling, and simulation of electrical machines. The ideal candidate should have solid backgrounds in modeling (including model reduction)/co-simulation of electromagnetics and thermal dynamics of electrical machines, and demonstrated capability to publish results in leading conferences/journals. Experience with ANSYS, COMSOL, and real-time control experiments involving motor drives is a strong plus. Senior Ph.D. students in electrical or mechanical engineering are encouraged to apply. Start date for this internship is flexible and the duration is about 3-6 months.

    • Research Areas: Applied Physics, Electric Systems, Multi-Physical Modeling
    • Host: Bingnan Wang
    • Apply Now
  • MD1370: Machine Learning based DPD for Power Amplifier

    • MERL is looking for a talented intern to work on the next generation Digital-predistortion algorithms for power amplifier linearization such as 5G. The development of a DPD system involves aspects of signal processing and statistical algorithm design, RF components and instrumentation, digital hardware and software. It is therefore both a challenging and intellectually rewarding experience. This will involve MATLAB coding, interfacing to test equipment such as power sources, signal generators and analyzers and construction and calibration of RF component assemblies. The ideal candidate should have knowledge and experience in adaptive signal processing, machine learning, and radio communication. Good practical laboratory skills are needed. RF semiconductor devices and circuit knowledge is a plus. Duration is 3 to 6 months.

    • Research Areas: Communications, Electronic and Photonic Devices, Machine Learning, Signal Processing
    • Host: Rui Ma
    • Apply Now
  • MD1564: Data-driven fluid mechanics and control

    • The Muti-Physics and Dynamics (MD) group at MERL is seeking a highly motivated, qualified individual to join our internship program in the summer of 2021. The ideal candidate will be a senior Ph.D. student specializing in fluid mechanics, control, turbulence modeling, reduced-order modeling, and non-convex optimization. Research experience in computational fluid dynamics (CFD), data-assimilations, continuous and discreet adjoint methods is highly desirable. Familiarity with computational programming languages like Python, Fortran or C++ (openFOAM level) is expected. Publication of results obtained during the internship is expected. The starting date is flexible between April-June 2021, and the internship will last 3-4 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Dynamical Systems, Machine Learning, Optimization
    • Host: Saleh Nabi
    • Apply Now
  • MD1479: Electrical Power System Modeling Simulation

    • MERL is seeking a motivated and qualified individual to conduct research in modeling, simulation and control of aircraft electrical power system. The ideal candidate should have solid backgrounds in dynamic modeling and simulation of power electronics and electrical machine, and transient analysis of overall electrical power system. Demonstrated experience in physical modeling and simulation software/language such as Modelica or Simscape is a necessity. Knowledge of aircraft dynamics and aerodynamics is a big plus. Senior Ph.D. students in aerospace, electrical engineering, control are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.

    • Research Areas: Dynamical Systems, Electric Systems, Multi-Physical Modeling
    • Host: Yebin Wang
    • Apply Now
  • MD1561: Desgn and fabrication of power devices in power electronics or RF

    • MERL is seeking a highly motivated, qualified individual to join our 3-month internship program to carry out research in the area of power electronics and RF semiconductors devices. The ideal candidate should have a significant background in the simulation and design of a 2D and 3D GaN devices using Matlab and TCAD. Proficiency in device semiconductor modeling or hands-on experience in GaN device fabrication processes and a deep knowledge of negative capacitance would be a great asset. Candidates who hold a PhD or in their senior years of a Ph.D. program are encouraged to apply. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Electronic and Photonic Devices
    • Host: Koon Hoo Teo
    • Apply Now
  • MD1559: blind signal decomposition

    • MERL is seeking a self-motivated intern to work on blind signal decomposition. The ideal candidate would be a senior PhD student with solid background in signal processing, sparse representation, and optimization. Prior experience in array signal processing, compressive sensing, and spectrum analysis is preferred. Skills in Python and/or Matlab are required. The intern is expected to collaborate with MERL researchers to build models, develop algorithms, and prepare manuscripts for scientific publications. The expected duration of the internship is 3 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Electric Systems, Optimization, Signal Processing
    • Host: Dehong Liu
    • Apply Now
  • MD1377: Adaptive Optimal Control of Electrical Machines

    • MERL is seeking a motivated and qualified individual to conduct research in control of electrical machines. The ideal candidate should have solid backgrounds in adaptive dynamic programming and state/parameter estimation for electrical machines, demonstrated capability to publish results in leading conferences/journals, and experience with real-time control experiments involving high power devices. Senior Ph.D. students are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.

    • Research Areas: Control, Electric Systems, Machine Learning
    • Host: Yebin Wang
    • Apply Now
  • MD1558: Symbolic regression

    • MERL is seeking a self-motivated intern to conduct fundamental research in the area of symbolic regression and deep learning for applications of recovering mathematical expressions or physical laws. The ideal candidate would be a senior PhD student with solid background in machine learning and strong publication record in top-tier venues. Prior experience in symbolic regression is strongly preferred. Very good Python, Pytorch/Tensorflow, and Matlab skills are required. The intern is expected to collaborate with MERL researchers to build models, develop algorithms, and prepare manuscripts for scientific publications. The expected duration of the internship is 3 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Machine Learning, Multi-Physical Modeling, Optimization
    • Host: Dehong Liu
    • Apply Now
  • SP1537: Machine Learning for Wireless Communications

    • MERL is seeking an intern to work on machine learning for wireless communication systems. The ideal candidate would be an experienced PhD student or post-graduate researcher working in wireless communications with a focus on machine learning methods. The candidate should have a detailed knowledge of wireless communications, with some experience in machine learning, MIMO, and/or channel equalization preferred. Strong programming skills in Python and machine learning frameworks are essential. The expected duration of the internship is 3-6 months with flexible start date and length. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Communications, Machine Learning
    • Host: Ye Wang
    • Apply Now
  • SP1517: AI-based spectrum management for 5G wireless networks and beyond

    • MERL is seeking a highly motivated, qualified intern to join a thirteen weeks internship program. The ideal candidate will be expected to carry out research on emerging 5G wireless networks and beyond for industrial applications. The candidate is expected to develop innovative spectrum-based traffic recognition and optimal scheduling for local spectrum access. Candidates should have strong knowledge about 5G networks, spectrum management, cognitive radio, and neural network. Proficient programming skills with MATLAB, C++, Python (Pytorch), experience with ns-3 simulator, and strong mathematical analysis will be additional assets to this position. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Communications, Machine Learning, Signal Processing
    • Host: K.J. Kim
    • Apply Now
  • SP1460: Advanced Vehicular Technologies

    • MERL is seeking a highly motivated, qualified intern to collaborate with the Signal Processing group and the Control for Autonomy team in developing technologies for Connected Automated Vehicles. The ideal candidate is expected to be involved in research on collaborative learning between infrastructure and vehicles. The candidate is expected to develop learning-based technologies to achieve vehicle coordination, estimation and GNSS-based localization using data and computation sharing between vehicle and infrastructure. The candidates should have knowledge of machine learning, connected vehicles and V2X communications. Knowledge of one or more traffic and/or multi-vehicle simulators (SUMO, Vissim, etc.) and GNSS is a plus. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply. The expected duration of the internship is 3-6 months, with start date in September/October 2020.

    • Research Areas: Artificial Intelligence, Control, Signal Processing
    • Host: Jianlin Guo
    • Apply Now
  • SP1516: Machine Learning for Optical Communications

    • MERL is seeking an intern to work on machine learning for coherent optical transmission systems. The ideal candidate would be an experienced PhD student or post-graduate researcher working in coherent optical communications. The candidate should have a detailed knowledge of optical communications, with some experience in machine learning, probabilistic shaping, coded modulation or ultra-wideband optical transmission systems preferred. Strong programming skills in MATLAB or Python are essential. Experience of working in an optical lab environment is a required. Duration is 3 to 6 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Communications, Signal Processing
    • Host: David Millar
    • Apply Now
  • SP1155: Coexistence of the Heterogeneous Wireless Technologies

    • MERL is seeking a highly motivated, qualified intern to join the Electronics and Communications group for a three month internship program. The ideal candidate will be expected to carry out research on coexistence of the heterogeneous wireless technologies in the Sub-1 GHz (S1G) band. The candidate is expected to develop innovative coexistence technology for IEEE 802.15.4g to mitigate interference caused by other S1G technologies such as IEEE 802.11ah, LoRa and SigFox. The candidates should have knowledge of 802.15.4g and 802.11ah protocols. Additionally, the candidate should also be familiar with NS3 simulators. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Area:
    • Host: Jianlin Guo
    • Apply Now
  • SP1478: Intelligent Brain-Machine Interface

    • MERL is seeking an intern to work on research for man-machine interface with multi-modal bio-sensors. The ideal candidate is an experienced PhD student or post-graduate researcher having an excellent background in brain-machine interface, deep learning, mixed reality, and signal processing. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Machine Learning, Signal Processing
    • Host: Toshi Koike-Akino
    • Apply Now
  • SP1543: Technologies for multimodal imaging

    • MERL is seeking a motivated intern to assist in developing hardware and algorithms for multimodal imaging applications. The project involves integration of radar, camera, and depth sensors in a variety of sensing scenarios. The ideal candidate should have experience with hardware interfacing, C++, Python, and scripting methods. Experience with radar prototyping hardware is desired but not necessary. Good knowledge of computational imaging and/or radar imaging methods is a plus. This internship requires work that can only be done at MERL.

    • Research Areas: Computational Sensing, Signal Processing
    • Host: Petros Boufounos
    • Apply Now
  • SP1307: Vehicular traffic environment sensing

    • MERL is seeking a highly motivated, qualified intern to join a three month internship program. The ideal candidate will be expected to carry out research on environmental sensing in high frequency bands. The candidate is expected to develop innovative sensing technologies. Candidates should have strong knowledge about neural network and learning techniques, such as machine learning, deep learning, shallow learning, and distributed learning. In addition, understanding of spectrum sensing and wireless communications technologies is necessary. Proficient programming skills with Python, MATLAB, and C++, and strong mathematical analysis will be additional assets to this position. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply.

    • Research Areas: Signal Processing
    • Host: K.J. Kim
    • Apply Now
  • SP1448: Intelligent Coding

    • The Signal Processing group at MERL is seeking a highly motivated, qualified individual to join our 3-month internship program of research on applied coding for data science. The ideal candidate is expected to possess an excellent background in channel coding, source coding, information theory, coded modulation design, signal processing, deep learning, quantum computing, and molecular computing.

    • Research Areas: Communications, Machine Learning, Signal Processing
    • Host: Toshi Koike-Akino
    • Apply Now
  • SP1512: Mutual Interference Mitigation

    • The Signal Processing (SP) group at MERL is seeking a highly motivated intern to conduct fundamental research in mutual interference mitigation for automotive radar. Previous experience in waveform design, radar detection under interference, joint communication and sensing, interference mitigation, and deep learning for radar is highly preferred. Knowledge about automotive radar schemes (MIMO and waveform modulation, e.g., FMCW, PMCW, and OFDM) is a plus. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments using MERL in-house testbed, and prepare results for patents and publication. Senior Ph.D. students with research focuses on signal processing, machine learning, optimization, applied mathematics, or related areas are encouraged to apply. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Communications, Computational Sensing, Data Analytics, Dynamical Systems, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • SP1504: Coherent Imaging Systems

    • MERL is seeking an intern to work on coherent optical imaging. The ideal candidate would be an experienced PhD student or post-graduate researcher working in coherent imaging. The candidate should have a detailed knowledge of optical interferometry and imaging with a focus on either optical coherence tomography, optical coherence microscopy or FMCW LIDAR. Strong programming skills in MATLAB are essential. Experience of working in an optical lab environment is a required. Duration is 3 to 6 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computational Sensing, Electronic and Photonic Devices
    • Host: David Millar
    • Apply Now
  • SP1506: Learning-based Wireless Sensing

    • The Signal Processing (SP) group at MERL is seeking a highly motivated intern to conduct fundamental research in learning-based wireless sensing using communication signals (such as WiFi, Bluetooth, 5G) and other RF signals (such as FMCW). Previous experience in occupancy sensing, people counting, localization, device-free pose/gesture recognition, and skeleton tracking with deep learning is highly preferred. Familiarity with IEEE 802.11 (g/n/ac/ad/ay)standards is a plus. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments using MERL in-house testbed, and prepare results for publication. Senior Ph.D. students with research focuses on wireless communications, machine learning, signal processing, optimization, applied mathematics, or related areas are encouraged to apply. The expected duration of the internship is 3 months with a flexible start date. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Communications, Computational Sensing, Dynamical Systems, Machine Learning, Robotics, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • SP1542: Research in Computational Sensing

    • The Computational Sensing team at MERL is seeking motivated and qualified individuals to assist in the development of computational methods for a variety of sensing applications. Ideal candidates should be Ph.D. students and have solid background and publication record in any of the following, or related areas: imaging inverse problems, learning for inverse problems, large-scale optimization, blind inverse scattering, radar/lidar/sonar imaging, sensing of dynamical systems, or wave-based inversion. Experience with experimentally measured data is desirable. Publication of the results produced during our internships is expected. The duration of the internships is anticipated to be 3-6 months. Start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computational Sensing, Dynamical Systems, Signal Processing
    • Host: Petros Boufounos
    • Apply Now
  • SP1507: Extended Object Tracking with Automotive Radar

    • The Signal Processing (SP) group at MERL is seeking a highly motivated intern to conduct fundamental research in extended object tracking (EOT) using automotive radar sensors. Previous experience in multiple (point and extended) object tracking, data association, and motion/measurement model learning on open automotive datasets is highly preferred. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments with MERL in-house testbed, data analysis (Python & MATLAB), and prepare results for patents and publication. Senior Ph.D. students with research focuses on signal processing, machine learning, optimization, applied mathematics, or related areas are encouraged to apply. The expected duration of the internship is 3 months with a flexible start date. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Computational Sensing, Data Analytics, Dynamical Systems, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • SP1513: Designing and optimizing photonic devices using deep learning

    • MERL is seeking a highly motivated, qualified individual to join our internship program and conduct research in the area of photonic and nanophotonic device design and optimization using deep learning. The ideal candidate should have a strong background in the simulation (such as Lumerical FDTD), design, and testing of devices for optical communications and/or optical computing, as well as hands-on experience in deep learning (such as autoencoders and GANs using Tensorflow/Keras/PyTorch). Experience in silicon photonics, photonic crystal, plasmonicss, metasurface optics, optimization algorithms, machine learning, quantum computing, photonic device fabrication/measurements, and mask designs for InP and silicon photonic MPW would be considered an asset. Candidates who hold a Ph.D. or in their senior years of a Ph.D. program are encouraged to apply.

    • Research Areas: Applied Physics, Electronic and Photonic Devices, Machine Learning
    • Host: Keisuke Kojima
    • Apply Now
  • SP1467: Machine learning for GNSS applications

    • MERL is seeking a highly motivated, qualified intern to join a thirteen weeks internship program. The ideal candidate will be expected to carry out research on Machine Learning for various GNSS applications. The candidate is expected to develop innovative machine learning technologies to increase accuracy and secrecy. Candidates should have strong knowledge about GNSS signal processing, handling RINEX data, neural network and learning techniques, such as feature extraction, deep machine learning, reinforcement learning, and distributed learning. Proficient programming skills with Python, MATLAB, and C++, and strong mathematical analysis will be additional assets to this position. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Signal Processing
    • Host: K.J. Kim
    • Apply Now
  • SP1468: Quantum Machine Learning

    • MERL is seeking an intern to work on research for quantum machine learning (QML). The ideal candidate is an experienced PhD student or post-graduate researcher having an excellent background in quantum computing, deep learning, and signal processing. Proficient programming skills with PyTorch, Qiskit, and PennyLane will be additional assets to this position. Also note that we wish to fill this position as soon as possible and expect that the candidate will be available during this fall/winter. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Machine Learning, Signal Processing
    • Host: Toshi Koike-Akino
    • Apply Now
  • SP1551: Algorithms for Large-Scale Optimal Transport

    • The Computational Sensing team at MERL is seeking motivated individuals to develop scalable optimal transport algorithms. Ideal candidates should be Ph.D. students with research experience in optimal transport and scalable optimal transport algorithms. Experience with GPU implementations is a plus. Publication of the results produced during our internships is expected. The duration of the internships is anticipated to be 3 months. Start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computational Sensing, Computer Vision, Machine Learning, Optimization, Signal Processing
    • Host: Yanting Ma
    • Apply Now
  • SP1522: AI Security for Cyber Physical Systems

    • MERL is seeking a highly motivated, qualified intern to join a thirteen weeks internship program. The ideal candidate will be expected to carry out research on AI security for various cyber physical systems. The candidate is expected to develop innovative AI technologies to increase cyber security. Candidates should have strong knowledge about neural network and learning techniques, such as feature extraction, machine learning, explainable learning, and distributed learning. Proficient programming skills with Pytorch, and strong mathematical analysis will be additional assets to this position. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Communications, Machine Learning, Signal Processing
    • Host: K.J. Kim
    • Apply Now
  • SP1483: Robust Machine Learning

    • MERL is seeking a highly motivated and qualified intern to work on robust machine learning techniques. The intern will collaborate with MERL researchers on developing novel approaches to address the problem of adversarial examples. The ideal candidate would have research experience in robust machine learning methods and defenses against adversarial examples. A mature understanding of modern machine learning methods, proficiency with Python, and familiarity with deep learning frameworks are expected. Proficiency with other programming languages and software development experience is a plus. Candidates at or beyond the middle of their Ph.D. program are encouraged to apply. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Machine Learning, Signal Processing
    • Host: Ye Wang
    • Apply Now
  • SP1510: Learning for inverse problems and dynamical systems

    • The Computational Sensing team at MERL is seeking motivated and qualified individuals to develop algorithms that solve inverse problems in computational sensing that incorporate deep learning architectures for a variety of sensing applications. The project goal is to improve the performance and develop an analysis of algorithms used for inverse problems by incorporating new tools from machine learning and artificial intelligence. Ideal candidates should be Ph.D. students and have solid background and publication record in any of the following, or related areas: imaging inverse problems, large-scale optimization, plug-and-play priors, learning-based modeling for imaging, learning theory for computational imaging, and Koopman theory/dynamic mode decomposition. Publication of the results produced during our internships is expected. The duration of the internships is anticipated to be 3-6 months. Start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computational Sensing, Dynamical Systems, Machine Learning, Signal Processing
    • Host: Hassan Mansour
    • Apply Now
  • SP1475: Advanced Signal Processing for Metasurface

    • MERL is seeking a highly motivated, qualified intern to join an internship program. The ideal candidate will be expected to carry out research on Advanced Signal Processing for Metasurface. The candidate is expected to develop innovative signal processing for metasurface aided various applications. Candidates should have strong knowledge about electromagnetic field analysis for metasurface, passive beamforming, interference mitigation, and channel estimation. Proficient programming skills with Python, MATLAB, and C++, and strong mathematical analysis will be additional assets to this position. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply. The expected duration of the internship is 3-6 months, with a flexible start date in 2020. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Applied Physics, Communications, Signal Processing
    • Host: K.J. Kim
    • Apply Now
  • DA1550: Computational Robotics

    • MERL is looking for a highly motivated and qualified candidate to work on contact models in physics engines. The ideal candidate should have very good coding skills in C++ and Python. Prior knowledge of contact models in physics engines like PyBullet and MuJoCo are welcome, but not completely necessary. The project requires development of a software package to investigate and improve the computational model in these physics engines for complex robotic manipulation tasks. Interested candidates should apply with a CV with details of previous software projects. Students pursuing an MS or PhD degree in Computer Science and Electrical Engineering are encouraged to apply. The duration of the internship is about 3-4 months from January 2021 to April 2021.

    • Research Areas: Optimization, Robotics
    • Host: Devesh Jha
    • Apply Now
  • DA1533: Machine Learning for Robotic Manipulation

    • MERL is looking for a self-motivated and qualified candidate to work on robotic manipulation projects. The ideal candidate is a PhD student and should have experience and records in multiple of the following areas. Machine learning techniques for modeling and control such as Gaussian Processes and Neural Networks. Knowledge of standard Reinforcement Learning algorithms. Experience in working with robotic systems and familiarity with one physics engine simulator like Mujoco, pyBullet, pyDrake. Proficiency in Python is required. The successful candidate will be expected to develop, in collaboration with MERL employees, state of the art algorithms to solve complex robotic manipulation tasks that will lead to a scientific publication. Typical internship length is 3-4 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Machine Learning, Robotics
    • Host: Diego Romeres
    • Apply Now
  • DA1503: Digitalized and resilient power grids

    • MERL is seeking a highly motivated and qualified individual to join our summer internship program and conduct research in the area of digitalized and resilient power grids. The ideal candidate should have a solid background in power systems, renewable generation, signal processing, and machine learning. Experience with MATLAB or C/C++/Python is required. The duration of the internship is expected to be 3-6 months, and the start date is flexible. Candidates in their senior or junior years of a Ph.D. program are encouraged to apply. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Electric Systems
    • Host: Hongbo Sun
    • Apply Now
  • DA1536: Micro-grid fault analysis and detection

    • MERL is seeking a highly motivated and qualified individual to join our summer internship program and conduct research in the area of micro-grid fault analysis and detection. The ideal candidate should have a solid background in micro-grid operation, transient analysis, fault detection, and power system protection. Experience with MATLAB or C/C++/Python is required. The duration of the internship is expected to be 3-6 months, and the start date is flexible. Candidates in their senior or junior years of a Ph.D. program are encouraged to apply. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Electric Systems
    • Host: Hongbo Sun
    • Apply Now
  • DA1482: Machine Learning and Optimization

    • MERL is looking for a self-motivated intern to develop machine learning and optimization algorithms. The ideal candidate would be a senior PhD student with experience in one or more of the following areas: machine learning, mathematical optimization, discrete-event systems modeling. Strong programming skills using Python are expected. Experience in transportation applications and traffic modeling would be a plus. The intern is expected to work with MERL researchers to develop algorithms and prepare manuscripts for scientific publications. The duration of the internship is expected to be 3 months. Start date is flexible.

    • Research Areas: Data Analytics, Machine Learning, Optimization
    • Host: BinBin Zhang
    • Apply Now
  • DA1509: Control theory-based accelerated optimization algorithms

    • MERL is seeking a motivated and qualified individual to conduct research in designing accelerated optimization algorithms based on principles from control theory. The ideal candidate should have solid background in optimization algorithms analysis. Knowledge of dynamical system theory, and deep learning applications is a plus, but not a requirement. Publication of the results produced during the internship is anticipated, i.e., ICML, ICLR, NeurIPS. Duration of the internship is expected to be 3 months. Start date is flexible.

    • Research Areas: Control, Dynamical Systems, Optimization
    • Host: Mouhacine Benosman
    • Apply Now
  • DA1476: Machine Learning for Anomaly Detection in Time Series Data

    • MERL is looking for a self-motivated intern to develop anomaly detection algorithms with applications in time series data. The ideal candidate is a senior PhD student with experience in methods applied to time series data including deep learning methods (AE, VAE, GAN, etc.) or experience in classical machine learning. Preferred candidates will have a background working with data outside computer vision. The candidate should have strong programming skills using Python and at least one publication. Successful internships at MERL result from intern driven algorithm development that leads to a scientific publication. Typical internship length is 3 months with early start dates preferred (ex. late April, early May). The internship is also available for the Fall of 2021. Please specify your preferred start date when applying.

    • Research Areas: Data Analytics
    • Host: Emil Laftchiev
    • Apply Now
  • DA1511: Deep RL for Contact-Rich Robotic Manipulation

    • MERL is looking for a highly motivated and qualified candidate to work on contact-rich robotic manipulation. The ideal candidate should have knowledge, mature understanding and experience working with multiple of these topics 1. Mathematical models of contact dynamics implemented in physics engines like Mujoco or Pybullet 2. Reinforcement Learning for robotics and 3. Optimization techniques for complementarity systems. The project requires development of novel algorithms for complex manipulation tasks which can implemented on a robotic test-bed in a feedback fashion using vision and tactile sensors. Prior experience working with these sensors for manipulation is also required. Interested candidates should apply with a CV with details of previous publications and projects in related topic. The duration of the internship is about 3-4 months.

    • Research Areas: Artificial Intelligence, Machine Learning, Optimization, Robotics
    • Host: Devesh Jha
    • Apply Now
  • DA1508: Safe reinforcement learning for real-life applications

    • MERL is seeking a motivated and qualified individual to conduct research in safe reinforcement learning (RL). The ideal candidate should have solid background in RL, e.g. CMDP, and RMDP theories. Knowledge of dynamical system theory and nonlinear control theory is a plus, but not a requirement. Publication of the results produced during the internship is anticipated, e.g., ICML, ICLR, NeurIPS. Duration of the internship is expected to be 3 months. Start date is flexible.

    • Research Areas: Artificial Intelligence
    • Host: Mouhacine Benosman
    • Apply Now
  • CA1529: Energy Management for Electric Vehicles

    • MERL is looking for a highly motivated intern to conduct research on data-driven energy management strategies for (hybrid) electric vehicles. The candidate will develop methods that use data, e.g., of human drivers or traffic conditions, in order to improve the control of electric vehicles. The ideal candidate will have experience in either one or multiple of the following topics: model predictive control, machine learning, statistical learning, numerical optimization, and (inverse) optimal control. Prior experience with (hybrid) electric vehicles is a plus. Good programming skills in MATLAB, Python, or C/C++ are required. PhD students in engineering or mathematics with a focus on control theory or numerical optimization are encouraged to apply. Publication of relevant results in conference proceedings or journals is expected. The expected duration of the internship is 3-6 months. The start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Dynamical Systems, Machine Learning
    • Host: Marcel Menner
    • Apply Now
  • CA1528: Learning-Based Stochastic Predictive Control

    • MERL is looking for highly motivated interns to work in the domain of data-based controller design and algorithms for stochastic model predictive control (MPC) methods. The research involves the derivation, implementation, and validation of novel algorithms for optimization-based/data-driven control for industrial applications, e.g., related to autonomous driving and robotics. The ideal candidate has experience in either one or multiple of the following topics: stochastic MPC (e.g., scenario trees or tube MPC), (inverse) optimal control, convex and nonconvex optimization, parallel processing, real-time optimization, machine learning, statistical learning, and Bayesian inference. PhD students in engineering or mathematics, especially with a focus on stochastic and learning-based control or numerical optimization, are encouraged to apply. Publication of relevant results in conference proceedings or journals is expected. Capability of implementing the designs and algorithms in MATLAB/Python is expected; coding parts of the algorithms in C/C++ is a plus. The expected duration of the internship is 3-6 months, and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Machine Learning, Optimization
    • Host: Karl Berntorp
    • Apply Now
  • CA1518: Safe control of data-driven, uncertain systems

    • MERL is looking for a highly motivated individual to work on safe control of data-driven, uncertain, dynamical systems. The research will develop novel optimization and learning-based control algorithms to guarantee safety in various industrial applications, including autonomous driving. The ideal candidate should have experience in either one or multiple of the following topics: optimal control under uncertainty, (convex and non-convex) optimization, and (reinforcement and statistical) learning. Ph.D. students in engineering or mathematics with a focus on control, optimization, and learning are encouraged to apply. A successful internship will result in the submission of relevant results to peer-reviewed conference proceedings and journals, and the development of well-documented (Python/MATLAB) code for MERL. The expected duration of the internship is 3-6 months, and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Dynamical Systems, Machine Learning, Optimization
    • Host: Abraham P. Vinod
    • Apply Now
  • CA1470: Connected vehicle-based distributed learning and estimation of road conditions

    • MERL is seeking a highly motivated qualified intern to collaborate with the Control for Autonomy team and the Signal Processing group in the development of learning technologies for Connected Vehicles technologies for distributed learning and estimation. The candidate will develop methods for distributed learning and estimation of road and road network conditions using information acquired from multiple connected vehicles. The ideal candidate is expected to be involved in research on collaborative distributed learning and estimation, with particular emphasis on statistical learning. The ideal candidate has knowledge of machine learning, estimation, connected vehicles and vehicle control systems. Knowledge of one or more traffic and/or multi-vehicle simulators (SUMO, Vissim, etc.) is a plus. Good programming skills in MATLAB, Python, or C/C++ are required. Candidates in their senior year of Master, or junior or senior years of a Ph.D. program are encouraged to apply. The expected duration of the internship is for the Fall 2020 or Winter 2021, with start date in November 2020-January 2021. Part-time engagement may be considered, although full-time is preferred. Given the current situation with COVID-19 pandemic, this internship will be done remotely from where the candidates lives using MERL equipment and resources.

    • Research Areas: Control, Dynamical Systems, Machine Learning
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1520: Autonomous Vehicles: Perception, Planning, and Control

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in the development of algorithms for planning and control of autonomous vehicles. The potential subjects include high level decision making using formal methods and set-based control, coordination or perception and control strategies to improve environment knowledge while achieving a goal, and distributed control for multi-vehicle systems. The ideal candidate is expected to be working towards a PhD with strong emphasis in control or planning algorithms, and to have interest and background in as many as possible among: motion planning, predictive control, perception and object detection optimization, machine learning for vehicle prediction, autonomous vehicles. Good programming skills in MATLAB, Python or C/C++ are required. The expected duration of the internship is in the Spring of 2021, for a duration of 3-6 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Control, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1538: Locomotion of Legged Robots

    • MERL is looking for highly motivated interns at different levels of expertise to conduct research on robot locomotion of legged robots. The research spans multiple areas from modeling, motion planning, sensing and learning from data, to control. The ideal candidate will have experience in either one or multiple of the following topics: model predictive control, machine learning, numerical optimization, and optimal control. Good programming skills in MATLAB, Python, or C/C++ are required. Graduate students in robotics, engineering, or mathematics with a focus on control theory or numerical optimization are encouraged to apply. Publication of relevant results in conference proceedings or journals is expected. The expected duration of the internship is 3-6 months. The start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Machine Learning, Robotics
    • Host: Marcel Menner
    • Apply Now
  • CA1544: Spacecraft Guidance, Navigation, and Control

    • MERL is seeking highly motivated interns for research positions in guidance, navigation, and control of spacecraft. The ideal candidates have experience in one or more of the following topics: astrodynamics, the three-body problem, relative motion dynamics, rendezvous, attitude control, orbit control, orbit determination, nonlinear estimation, computer vision, and optimization-based control. PhD students in aerospace, mechanical, or electrical engineering are encouraged to apply. Publication of results produced during the internship is expected. The duration of the internships are 3-6 months, and the start dates are flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Dynamical Systems
    • Host: Avishai Weiss
    • Apply Now
  • CA1515: Mixed-Integer Programming for Hybrid Control

    • MERL is looking for a highly motivated individual to work on tailored computational algorithms and applications of mixed-integer programming for decision making, planning and control of hybrid systems. The research will involve the study and development of numerical optimization techniques and/or the implementation and validation of algorithms for industrial applications, e.g., related to autonomous driving and robotics. The ideal candidate should have experience in either one or multiple of the following topics: branch-and-bound type methods, heuristics for mixed-integer programming (pre-solve, cutting planes, warm starting, integer-feasible solutions), modeling and formulation of hybrid control systems, convex and non-convex optimization, machine learning and real-time optimization. PhD students in engineering or mathematics, especially with a focus on mixed-integer programming or numerical optimization, are encouraged to apply. Publication of relevant results in conference proceedings and journals is expected. Capability of implementing the designs and algorithms in MATLAB/Python is expected; coding parts of the algorithms in C/C++ is a plus. The expected duration of the internship is 3-6 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Machine Learning, Optimization, Robotics
    • Host: Rien Quirynen
    • Apply Now
  • CA1521: Coordinated Perception and Control for Autonomous Systems

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in the development of algorithms for coordinating control and perception in autonomous systems. The overall objective is to determine the sensing strategy together with the motion/control strategy to effectively achieve a control goal while managing the risk due to the environment uncertainty. The ideal candidate is expected to be working towards a PhD with strong emphasis in control or planning algorithms, and to have interest and background in as many as possible among: predictive control, stochastic tubes, scenario-based stochastic optimization, uncertainty and risk representation, machine learning and motion planning algorithms. Good programming skills in MATLAB and/or Python, are required. The expected duration of the internship is in the Spring of 2021, for a duration of 3-6 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Machine Learning, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1530: Hybrid Control of Cyberphysical Systems

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in the development of hybrid control algorithms for cyberphysical system. The potential subjects include formal methods for control synthesis, control barrier-functions, stabilizing control for hybrid dynamical systems, and optimal control of hybrid dynamics. The ideal candidate is expected to be working towards a PhD with strong emphasis in control theory, and to have interest and background in as many as possible among: predictive control, Lyapunov stability, formal methods for control, constrained control, optimization, and machine learning. Good programming skills in MATLAB, and/or Python are required. The expected duration of the internship is in the Spring of 2021, for a duration of 3-6 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1519: Estimation for High-Precision Positioning

    • MERL is seeking a highly motivated candidate for development of next-generation high-precision positioning methods for autonomous systems applications, e.g., autonomous driving. The candidate will work with the Control for Autonomy team and the Signal Processing group in developing satellite-based positioning methods using information from multiple sources. Previous experience with at least some of the Bayesian inference, distributed estimation, satellite navigation systems, is highly desirable. Solid knowledge in MATLAB is required, working experience in C/C++ is desired, and previous experience with satellite navigation packages such as RTKLib is a merit. PhD candidates meeting the above requirements are encouraged to apply. The expected duration of the internship is 3-6 months with flexible start date. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Machine Learning, Signal Processing
    • Host: Karl Berntorp
    • Apply Now
  • CA1565: Connected Vehicle Driver Assistance Systems

    • MERL is seeking a highly motivated qualified intern to collaborate with the Control for Autonomy team and the Signal Processing group in the development of Advanced Driver Assistance Systems (ADAS) for Connected Vehicles. The intern will collaborate in the development of methods for distributed learning and optimization of ADAS using data-sharing between connected vehicles and infrastructure. The ideal candidate has knowledge of machine learning, optimization and connected vehicles. Knowledge of one or more traffic and/or multi-vehicle simulators (SUMO, Vissim, etc.) is a plus. Good programming skills in MATLAB, Python, or C/C++ are required. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply. The expected duration of the internship is 3-6 months, starting in Spring or Summer 2021, but later starting periods may also be considered. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Machine Learning, Optimization
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1531: Learning-based multi-agent motion planning

    • MERL is seeking a highly motivated intern to research multi-agent motion planning by combining optimization-based methods with machine learning. The ideal candidate is enrolled in a PhD program in Electrical, Mechanical, Aerospace Engineering, Robotics, Computer Science or related program, with prior experience in multi-agent motion planning, machine learning (especially supervised, reinforcement, and safe ML), and convex and non-convex optimization. A successful internship will result in innovative methods for multiagent planning, in the development of well-documented (Python/MATLAB) code for validating the proposed methods, and in the submission of relevant results for publication in peer-reviewed conference proceedings and journals. The expected duration of the internship is 3 months with a flexible start date in the Spring/Summer 2021. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Dynamical Systems, Machine Learning, Optimization, Robotics
    • Host: Abraham P. Vinod
    • Apply Now
  • MS1563: Estimation and Optimization for Large-Scale Systems

    • MERL is seeking a motivated graduate student to research methods for state and parameter estimation and optimization of large-scale systems for process applications. Representative applications include large vapor-compression cycles and other multiphysical systems for energy conversion that couple thermodynamic, fluid, and electrical domains. The ideal candidate would have a solid background in control and estimation, numerical methods, and optimization; strong programming skills and experience with Julia/Python/Matlab are also expected. Knowledge of the fundamental physics of thermofluid flows (e.g., thermodynamics, heat transfer, and fluid mechanics), nonlinear dynamics, or equation-oriented languages (Modelica, gPROMS) is a plus. The expected duration of this internship is 3 months.

    • Research Areas: Control, Multi-Physical Modeling, Optimization
    • Host: Chris Laughman
    • Apply Now
  • MS1572: Control for Precise Robotic Assembly

    • MERL seeks a highly motivated intern to perform research on

      advanced dynamic modeling and control of high-precision robotic assembly. The research will involve developing new model-based algorithms for control of contact and collisions that occur during assembly operations, specifically using a new type of low mass, programmable impedance direct-drive delta robot with integrated

      touch sensing. Specifically, modeling and control of a new six degree-of-freedom wrist, integrated with a three degree-of-freedom delta robot used for assembly operations will be a focus of the research. Ph.D. students with knowledge and expertise in

      control theory and robotics, and strong working knowledge of Matlab

      and C programming, and with experience and interest in

      conducting experimental research are encouraged to apply.

      Publication of results is expected in both leading conferences

      and journals. The internship is expected to be 3-6 months in duration, preferably in the spring and summer 2021. This internship requires work that can only be done at MERL.

    • Research Areas: Control, Multi-Physical Modeling, Robotics
    • Host: Scott Bortoff
    • Apply Now
  • MS1571: Data-based Dynamic Modeling of Vapor Compression Systems

    • MERL is seeking a motivated and qualified individual to conduct research in dynamic modeling of vapor compression systems. Knowledge of data-based modeling techniques such as neural network and support vector regression is required. Experience in working with thermo-fluid systems is preferred. The intern is expected to collaborate with MERL researchers to build models, develop algorithms, and prepare manuscripts for scientific publications. Senior Ph.D. students in applied mathematics, chemical/mechanical engineering and other related areas are encouraged to apply. The expected duration of the internship is 3 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Multi-Physical Modeling
    • Host: Hongtao Qiao
    • Apply Now
  • MS1466: Modelica-Based Control of HVAC Equipment

    • MERL seeks a highly motivated intern to develop an interface between real-time control systems that are implemented in the Modelica language, and laboratory HVAC equipment that is controlled by Labview. The control algorithms are developed using our Modelica library of HVAC components, and are realized natively in the Modelica language using the Synchronous Library. They are run in real-time on a PC using the Modelica Device Drivers library, and communicate with the Labview system via UDP. The intern would be responsible for developing professional-grade code to mature this interface, and then conduct experiments to test new control algorithms in our laboratory. Expertise using software development tools, such as Microsoft Visual Studio and network protocols such as UDP, is necessary. Experience with Modelica is strongly preferred. Knowledge and experience of vapor compression systems is also strongly preferred. Knowledge of control theory, including classical feedback and finite state machines, along with related laboratory experience is required. On-site employment is preferred, although it may be possible to conduct this work remotely. Students enrolled in a Masters or Ph.D. degree program of study are encouraged to apply. The internship is expected to be 3-6 months in duration, preferably in the fall or winter, 2020.

    • Research Areas: Control, Multi-Physical Modeling
    • Host: Chris Laughman
    • Apply Now
  • MS1560: Thermofluid System Performance Optimization Tools

    • MERL seeks a highly motivated intern to improve existing methods to optimize the performance of thermofluid systems. The current optimization algorithms are written in C#, Matlab, and Python, and require the development of a user interface so that practicing engineers can draw upon their experiences to intuitively understand and work through the optimization process. Candidates will have experience in C, C#, Matlab, and/or Python; experience with GUI toolkits is strongly recommended. This internship can be conducted virtually, though work on-site may be accommodated if necessary. The internship is expected to be 3-6 months in duration.

    • Research Areas: Multi-Physical Modeling, Optimization
    • Host: Chris Laughman
    • Apply Now
  • MS1523: Transfer Learning for HVAC Modeling and Control

    • The Multiphysical Systems (MS) team at MERL is seeking a highly motivated intern to conduct research on data-driven modeling and control of HVAC systems, with special emphasis on transfer learning. The ideal candidate is enrolled in a PhD program and is pursuing research in learning and control. The ideal candidate will have experience in (one or more of) parameter estimation of dynamical systems, transfer learning or meta-learning, Bayesian optimization, and must be fluent in Python. The expected duration of the (virtual) internship is 3 months in Summer 2021; start-date is flexible (after April 2021). This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Control, Machine Learning, Multi-Physical Modeling, Optimization
    • Host: Ankush Chakrabarty
    • Apply Now
  • SA1469: Audio source separation and sound event detection

    • We are seeking multiple graduate students interested in helping advance the fields of source separation, speech enhancement, and sound event detection/localization in challenging multi-source and far-field scenarios. The intern will collaborate with MERL researchers to derive and implement new models and optimization methods, conduct experiments, and prepare results for publication. The ideal candidate would be a senior Ph.D. student with experience in audio signal processing, microphone array processing, probabilistic modeling, and deep learning techniques requiring minimal supervision (e.g., unsupervised, weakly-supervised, self-supervised, or few shot learning). The expected duration of the internship is 3-6 months and start date is flexible.

    • Research Areas: Machine Learning, Speech & Audio
    • Host: Gordon Wichern
    • Apply Now
  • SA1573: Design and simulation of metasurface optics using deep learning

    • MERL is seeking a highly motivated, qualified individual to join our internship program and conduct research in the area of metasurface optic device simulation and design using deep learning. The ideal candidate should have a strong background in the simulation (such as Lumerical FDTD or open-source equivalents), design, and testing of metasurface optics, as well as hands-on experience in deep learning (such as autoencoders and GANs using Tensorflow/Keras/PyTorch). Experience in related fields (silicon photonics, plasmonics, optimization algorithms, machine learning, etc.,) would be considered a plus. Candidates who hold a Ph.D. or are in their senior years of a Ph.D. program are encouraged to apply.

    • Research Areas: Electronic and Photonic Devices, Machine Learning, Optimization
    • Host: Matt Brand
    • Apply Now
  • SA1473: Multi-modal scene understanding

    • We are looking for a graduate student interested in helping advance the field of multi-modal scene understanding, with a focus on detailed captioning of a scene using natural language. The intern will collaborate with MERL researchers to derive and implement new models and optimization methods, conduct experiments, and prepare results for publication. The ideal candidate would be a senior Ph.D. student with experience in deep learning for audio-visual, signal and natural language processing. The expected duration of the internship is 3-6 months, and start date is flexible.

    • Research Areas: Artificial Intelligence, Computer Vision, Speech & Audio
    • Host: Chiori Hori
    • Apply Now
  • SA1471: End-to-end speech and audio processing for new and challenging environments

    • MERL is looking for interns to work on fundamental research in the area of end-to-end speech and audio processing for new and challenging environments using advanced machine learning techniques. The intern will collaborate with MERL researchers to derive and implement new models and learning methods, conduct experiments, and prepare results for high impact publication. The ideal candidates would be senior Ph.D. students with experience in one or more of automatic speech recognition, speech enhancement, sound event detection, and natural language processing, including good theoretical and practical knowledge of relevant machine learning algorithms with related programming skills. The duration of the internship is expected to be 3-6 months. Positions are available immediately and throughout 2021.

    • Research Areas: Speech & Audio
    • Host: Takaaki Hori
    • Apply Now