Internship Openings

20 Intern positions are currently open.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Working at MERL requires full authorization to work in the U.S and access to technology, software and other information that is subject to governmental access control restrictions, due to export controls. Employment is conditioned on continued full authorization to work in the U.S and the availability of government authorization for the release of these items, which might include without limitation, obtaining an export license or other documentation. MERL may delay commencement of employment, rescind an offer of employment, terminate employment, and/or modify job responsibilities, compensation, benefits, and/or access to MERL facilities and information systems, as MERL deems appropriate, to ensure practical compliance with applicable employment law and government access control restrictions.

Rising to the challenges of COVID-19

MERL believes that having an internship be located in MERL's office allows for particularly good interaction between you and those that you will be working with at MERL. In addition, some intern projects, e.g., ones that require specialized laboratory equipment, can only be pursued in our office. Going forward, we expect that all internships will be in-person at MERL. If health and safety concerns do not permit this, we will reevaluate our plans and some internships might have to become remote.

It is a requirement at MERL that everyone working in MERL's space must be fully vaccinated. In order for you to have your internship at MERL, you will have to prove that you are fully vaccinated when you arrive at MERL, i.e., by showing your vaccination card.


  • SA1959: Metasurfaces for machine vision

    • We seek highly qualified candidates for research on co-design and optimization of metasurfaces and machine vision algorithms, with a particular interest in polarization. Strong candidates will have a background in metasurface optics, fluency with FDTD and RCWA simulation tools, and some familiarity with optimization methods used in computer vision and machine learning.

    • Research Areas: Applied Physics, Computational Sensing, Machine Learning
    • Host: Matt Brand
    • Apply Now
  • MS1957: Estimation and Model Structure Identification for Digital Twins

    • MERL is looking for a highly motivated and qualified candidate to work on estimation and model structure identification for digital twins of multi-physical systems. The research will involve study and development of white-box and grey-box model calibration and identification methods suitable for large-scale systems. The ideal candidate will have a strong background in one or multiple of the following topics: nonlinear estimation, model identification, optimization, data-driven and reduced order modeling, and machine learning; with expertise demonstrated via, e.g., peer-reviewed publications. Prior programming experience in Julia/Modelica is a plus. Senior PhD students in mechanical, electrical, chemical engineering or related fields are encouraged to apply. The typical duration of internship is 3 months and start date is flexible.

    • Research Areas: Control, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization
    • Host: Vedang Deshpande
    • Apply Now
  • MS1851: Dynamic Modeling and Control for Grid-Interactive Buildings

    • MERL is looking for a highly motivated and qualified candidate to work on modeling for smart sustainable buildings. The ideal candidate will have a strong understanding of modeling renewable energy sources, grid-interactive buildings, occupant behavior, and dynamical systems with expertise demonstrated via, e.g., peer-reviewed publications. Hands-on programming experience with Modelica is preferred. The minimum duration of the internship is 12 weeks; start time is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Machine Learning, Multi-Physical Modeling, Optimization
    • Host: Chris Laughman
    • Apply Now
  • MS2012: Residual Model Learning for Building Energy Systems

    • MERL is looking for a highly motivated and qualified candidate to work on learning residual dynamics to augment ODE/DAE-based models of building energy systems. The ideal candidate will have a strong understanding of system identification, optimization, machine learning and/or function approximation; additional understanding of energy systems is a plus. Hands-on programming experience with numerical optimization solvers and Python is preferred; experience with Modelica/FMUs is a plus. PhD students are strongly preferred, as an expected outcome of the internship is a publication in a high-tier venue. The minimum duration of the internship is 12 weeks; start time is flexible.

    • Research Areas: Control, Machine Learning, Multi-Physical Modeling, Optimization
    • Host: Ankush Chakrabarty
    • Apply Now
  • MS1958: Simulation, Control, and Optimization of Large-Scale Systems

    • MERL is seeking a motivated graduate student to research numerical methods pertaining to the simulation, control, and optimization of large-scale systems. Representative applications include large vapor-compression cycles and other multiphysical systems for energy conversion that couple thermodynamic, fluid, and electrical domains. The ideal candidate would have a solid background in numerical methods, control, and optimization; strong programming skills and experience with Julia/Python/Matlab are also expected. Knowledge of the fundamental physics of thermofluid flows (e.g., thermodynamics, heat transfer, and fluid mechanics), nonlinear dynamics, or equation-oriented languages (Modelica, gPROMS) is a plus. The expected duration of this internship is 3 months.

    • Research Areas: Control, Multi-Physical Modeling, Optimization
    • Host: Chris Laughman
    • Apply Now
  • MS2005: Modeling and Control of Robotic Contacts and Collisions

    • MERL is seeking a highly motivated and qualified intern to conduct research into

      hybrid modeling and control of object contact and collision for precise robotic assembly.

      The ideal candidate is expected to be working toward a Ph.D. or equivalent degree

      in the area of modeling and control of hybrid systems (those with both continuous and

      discrete states), with strong knowledge and interest in differential algebraic

      equations (DAEs), nonlinear and hybrid control theory, geometric algebra

      and coordinate-free geometric methods. The research involves formalizing and extending

      a hybrid DAE-based method of modeling the physics of object contact and collision to

      include acausal effects of friction, address contact constraints of dimension

      greater then one among objects, and formalize the method using hybrid systems theory

      to study well-posedness issues and enable application of optimal control theory for

      path planning and control of robotic assembly problems. The expected start of of the

      internship is in the late Spring/Early Summer 2022, for a duration of 3-6 months.

    • Research Areas: Control, Multi-Physical Modeling, Robotics
    • Host: Scott Bortoff
    • Apply Now
  • CI1946: Robust, Private, and Efficient Machine Learning

    • MERL is seeking highly motivated and qualified interns to work on fundamental machine learning techniques for robustness, privacy, and efficiency. The ideal candidates would have significant research experience in one or more of the following topics: robust machine learning methods, defenses against adversarial examples, privacy issues in machine learning, membership inference attacks, federated/distributed learning, and/or efficient/Green AI. A mature understanding of modern machine learning methods, proficiency with Python, and familiarity with deep learning frameworks are expected. Proficiency with other programming languages and software development experience is a plus. Candidates at or beyond the middle of their Ph.D. program are encouraged to apply. Multiple positions are available throughout 2023 (Spring/Summer of course, but also as early as January), with expected durations of 3-6 months and flexible start dates.

    • Research Areas: Artificial Intelligence, Machine Learning, Signal Processing
    • Host: Ye Wang
    • Apply Now
  • CI1950: Quantum Machine Learning

    • MERL is seeking an intern to work on research for quantum machine learning (QML). The ideal candidate is an experienced PhD student or post-graduate researcher having an excellent background in quantum computing, deep learning, and signal processing. Proficient programming skills with PyTorch and PennyLane will be additional assets to this position.

    • Research Areas: Artificial Intelligence, Machine Learning, Signal Processing
    • Host: Toshi Koike-Akino
    • Apply Now
  • ST1762: Computational Sensing Technologies

    • The Computational Sensing team at MERL is seeking motivated and qualified individuals to assist in the development of computational methods for a variety of sensing applications. Ideal candidates should be Ph.D. students and have solid background and publication record in any of the following, or related areas: imaging inverse problems, deep learning for inverse problems, large-scale optimization, blind inverse scattering, radar/lidar/THz imaging, joint communications and sensing, multimodal sensor fusion, object or human tracking, sensing of dynamical systems, or wave-based inversion. Experience with experimentally measured data is desirable. Publication of the results produced during our internships is expected. The duration of the internships is anticipated to be 3-6 months. Start date is flexible.

    • Research Areas: Computational Sensing, Signal Processing
    • Host: Petros Boufounos
    • Apply Now
  • ST1750: THz (Terahertz) Sensing

    • The Signal Processing (SP) group at MERL is seeking a highly motivated intern to conduct fundamental research in THz (Terahertz) sensing. Expertise in statistical inference, unsupervised anomaly detection, and deep learning (spatial-temporal representation learning) is required. Previous hands-on experience in THz data analysis is a plus. Familiarity with python and deep learning libraries is a must. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments with collaborators, and prepare results for patents and publication. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Computational Sensing, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • ST1763: Technologies for Multimodal Tracking and Imaging

    • MERL is seeking a motivated intern to assist in developing hardware and algorithms for multimodal imaging applications. The project involves integration of radar, camera, and depth sensors in a variety of sensing scenarios. The ideal candidate should have experience with FMCW radar and/or depth sensing, and be fluent in Python and scripting methods. Familiarity with optical tracking of humans and experience with hardware prototyping is desired. Good knowledge of computational imaging and/or radar imaging methods is a plus.

    • Research Areas: Computational Sensing, Signal Processing
    • Host: Petros Boufounos
    • Apply Now
  • DA1982: Power distribution system phase identification and state tracking

    • MERL is seeking a highly motivated and qualified individual to join our summer internship program and conduct research on power distribution system phase identification and state tracking. The ideal candidate should have a solid knowledge of power distribution systems, power system state estimation, signal processing, and machine learning. Experience with Simulink, and C/C++/Python is required. The duration of the internship is expected to be 3 months, and the start date is flexible. Senior Ph.D. students or Ph.D. holders specializing in electrical engineering or related areas are encouraged to apply.

    • Research Areas: Data Analytics, Electric Systems
    • Host: Hongbo Sun
    • Apply Now
  • CA1940: Autonomous vehicle planning and contro in uncertain environments

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on planning and control for autonomous vehicles in uncertain surrounding environments. The research domain includes algorithms for path planning and control in environments that are uncertain and perceived by sensing and predicted according to models and data. The ideal candidate is expected to be working towards a PhD with strong emphasis in vehicle guidance and control, and to have interest and background in as many as possible of: vehicle dynamics modeling and control, sensor uncertainty modeling, data-driven prediction, predictive control for uncertain systems, motion planning. Good programming skills in MATLAB, Python are required, knowledge of C/C++, rapid prototyping systems, automatic code generation, vehicle simulation packages (CarSim, CarMaker) or ROS are a plus. The expected start of of the internship is in the late Spring/Early Summer 2022, for a duration of 3-6 months.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1904: Numerical Optimal Control for Hybrid Dynamical Systems

    • MERL is looking for a highly motivated individual to work on tailored computational algorithms for numerical optimal control of hybrid dynamical systems and applications for decision making, motion planning and control of autonomous systems. The research will involve the study and development of numerical optimal control methods for systems with continuous dynamics and discrete logic, nonsmooth and/or switched dynamics, and the implementation and validation of such algorithms for industrial applications, e.g., related to autonomous driving and robotics. The ideal candidate should have experience in either one or multiple of the following topics: mixed-integer programming (MIP), mathematical programs with complementarity constraints (MPCCs), modeling and formulation of optimal control problems for hybrid dynamical systems, convex and non-convex optimization, machine learning and real-time optimization. PhD students in engineering or mathematics, especially with a focus on MIPs, MPCCs or numerical optimal control, are encouraged to apply. Publication of relevant results in conference proceedings or journals is expected. Capability of implementing the designs and algorithms in MATLAB/Python is expected; coding parts of the algorithms in C/C++ is a plus. The expected duration of the internship is 3-6 months and the start date is flexible.

    • Research Areas: Control, Machine Learning, Optimization, Robotics
    • Host: Rien Quirynen
    • Apply Now
  • CA1944: Vehicle Estimation and Learning

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on GNSS-based estimation and sensor fusion algorithms. The ideal candidate is expected to be working towards a PhD with strong emphasis in statistical signal processing and estimation, and with experience in at least some of the following areas: application and theory of Bayesian inference, learning, Kalman filters, variational Bayes, automotive, autonomous vehicles, distributed estimation, large-scale estimation, sensor fusion including camera radar and/or GNSS. Good programming skills in MATLAB, Python, or C/C++ are required. The expected duration of the internship is 3-6 months.

    • Research Areas: Control, Signal Processing
    • Host: Karl Berntorp
    • Apply Now
  • CV1938: Component transfer learning for RL and robotic applications

    • MERL is offering a new research internship opportunity in the field of Transfer Learning for Deep RL. The position requires a strong background in Deep RL, excellent programming skills and experience with robotics is preferred. The position is open to graduate students on a PhD track only, and the length of the internship is three months with the possibility of extending if required. The intern is expected to disseminate this research in top tier scientific conferences such as RSS, IROS, ICRA etc., and if applicable, help with filing associated patents. Start and end dates are flexible.

    • Research Areas: Artificial Intelligence, Machine Learning, Robotics
    • Host: Radu Corcodel
    • Apply Now
  • CV1992: High precision pose estimation of deformable objects

    • MERL is seeking a highly motivated intern to conduct original research in high precision pose estimation of deformable objects. Applicants are required to have a strong background in image processing, machine vision and point cloud processing using depth cameras. The internship is open to PhD students, preferably specializing in Computer Vision, with a strong publication record, solid programming skills in Python and/or C/C++, and preferably some experience using tactile sensors. Internship duration and start date are flexible.

    • Research Areas: Computer Vision, Machine Learning, Robotics
    • Host: Radu Corcodel
    • Apply Now
  • MD1887: Optimization and control of xEV and electric aircraft

    • MERL is seeking a motivated and qualified individual to conduct research in modeling, control, simulation and analysis of electric system involved in xEV and electric aircraft. The ideal candidate should have solid backgrounds in some of the following areas: modeling, control, and simulation of electrical systems (including generators, motors, power electronics and batteries), aerodynamics, mission analysis, flight dynamics, and multi-disciplinary system design optimization. Demonstrated experience in software/language such as Modelica or Matlab/Simulink/Simscape is a necessity. Knowledge and experience of CarSim, NPSS, SUAVE, and FLOPS is a definite plus. Senior Ph.D. students in automotive, aerospace, and electrical engineering are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.

    • Research Areas: Control, Electric Systems, Multi-Physical Modeling, Optimization
    • Host: Yebin Wang
    • Apply Now
  • MD1886: Co-design of robotic arm and control systems

    • MERL is seeking a highly motivated and qualified individual to conduct research in model-based robotic system design. The ideal candidate should have solid backgrounds in robotic dynamics and simulation, motion planning and control, simulation-based optimization, surrogate modeling, and coding skills. Demonstrated experience on implementing robotic dynamics and simulation/optimization software such as Matlab is a necessity. Ph.D. students in mechanical engineering, robotics, computer science, and electrical engineering are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Yebin Wang
    • Apply Now
  • MD1891: Electric machine monitoring technologies

    • MERL is looking for a self-motivated intern to work on electric machine monitoring, fault detection, and predictive maintenance. The ideal candidate would be a Ph.D. candidate in electrical engineering or computer science with solid research background in electric machines, signal processing, and machine learning. Proficiency in MATLAB and Simulink is necessary. The intern is expected to collaborate with MERL researchers to perform simulations, analyze experimental data, and prepare manuscripts for scientific publications. The total duration is anticipated to be 3 months and the start date is flexible. This internship requires work that can only be done at MERL.

    • Research Areas: Electric Systems, Machine Learning, Signal Processing
    • Host: Dehong Liu
    • Apply Now