-
CV0063: Internship - Visual Simultaneous Localization and Mapping
MERL is looking for a self-motivated graduate student to work on Visual Simultaneous Localization and Mapping (V-SLAM). Based on the candidate’s interests, the intern can work on a variety of topics such as (but not limited to): camera pose estimation, feature detection and matching, visual-LiDAR data fusion, pose-graph optimization, loop closure detection, and image-based camera relocalization. The ideal candidate would be a PhD student with a strong background in 3D computer vision and good programming skills in C/C++ and/or Python. The candidate must have published at least one paper in a top-tier computer vision, machine learning, or robotics venue, such as CVPR, ECCV, ICCV, NeurIPS, ICRA, or IROS. The intern will collaborate with MERL researchers to derive and implement new algorithms for V-SLAM, conduct experiments, and report findings. A submission to a top-tier conference is expected. The duration of the internship and start date are flexible.
Required Specific Experience
- Experience with 3D Computer Vision and Simultaneous Localization & Mapping.
- Research Areas: Computer Vision, Robotics, Control
- Host: Pedro Miraldo
- Apply Now
-
CA0153: Internship - High-Fidelity Visualization and Simulation for Space Applications
MERL is seeking a highly motivated graduate student to develop high-fidelity full-stack GNC simulators for space applications. The ideal candidate has strong experience with rendering engines, synthetic image generation, and computer vision, as well as familiarity with spacecraft dynamics, motion planning, and state estimation. The developed software should allow for closed-loop execution with the synthetic imagery, and ideally allow for real-time visualization. Publication of results produced during the internship is desired. The expected duration of the internship is 3-6 months with a flexible start date.
Required Specific Experience
- Current enrollment in a graduate program in Aerospace, Computer Science, Robotics, Mechanical, Electrical Engineering, or a related field
-
Experience with one or more of Blender, Unreal, Unity, along with their APIs
-
Strong programming skills in one or more of Matlab, Python, and/or C/C++
- Research Areas: Computer Vision, Control, Dynamical Systems, Optimization
- Host: Avishai Weiss
- Apply Now
-
OR0171: Internship - Foundation Models for Robotic Manipulation
MERL is seeking a highly motivated and qualified intern to conduct research on applying foundation models to robotic manipulation. The focus will be on leveraging large-scale pretrained models (e.g., vision-language models, multimodal transformers, diffusion policies) to enable generalist manipulation capabilities across diverse objects, tasks and embodiments including humanoids. Potential research topics include few-shot policy learning, multimodal grounding of multiple sensor modalities to robot actions, and adapting foundation models for precise control and high success rate.
The ideal candidate will be a senior Ph.D. student with a strong background in machine learning for robotics, particularly in areas such as foundation models, imitation learning, reinforcement learning, and multimodal perception. Knowledge on large-scale Vision-Language-Action (VLA) and multimodal foundation models is expected. The internship will involve algorithm design, model fine-tuning, simulation experiments, and deployment on physical robot platforms equipped with cameras, tactile sensors, and force/torque sensors. The successful candidate will collaborate closely with MERL researchers, with the expectation of publishing in top-tier robotics or AI conferences/journals. Interested candidates should apply with an updated CV and relevant publications.
Required Specific Experience
-
Strong background in machine learning for robotics, particularly foundation models (e.g., pi_0, OpenVLA, RT-X, etc.) and imitation learning.
-
Experience with simulation environments such as Mujoco, Isaac Gym, or RLBench.
-
Experience with physical robot platforms and sensors (vision, tactile, force/torque).
-
Proficiency in Python, PyTorch, and modern deep learning frameworks
-
Strong publication record in robotics, machine learning, or AI venues
Internship Details
- Duration: ~3 months
- Start Date: Fall 2025 (flexible based on mutual agreement)
- Goal: Publish research at leading robotics/AI conferences and journals
-
- Research Areas: Artificial Intelligence, Control, Computer Vision, Robotics, Machine Learning
- Host: Diego Romeres
- Apply Now
-
OR0164: Internship - Robotic 6D grasp pose estimation
MERL is looking for a highly motivated and qualified intern to work on methods for task-oriented 6-dof grasp pose detection using vision and tactile sensing. The objective is to enable a robot to identify multiple 6-DoF grasp poses tailored to specific tasks, allowing it to effectively grasp and manipulate objects. The ideal candidate would be a Ph.D. student familiar with the state-of-the-art methods for robotic grasping, object tracking, and imitation learning. This role involves developing, fine-tuning and deploying models on hardware. The successful candidate will work closely with MERL researchers to develop and implement novel algorithms, conduct experiments, and publish research findings at a top-tier conference. Start date and expected duration of the internship is flexible. Interested candidates are encouraged to apply with their updated CV and list of relevant publications.
Required Specific Experience
- Prior experience in robotic grasping
- Experience in Machine Learning
- Excellent programing skills
- Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Robotics
- Host: Radu Corcodel
- Apply Now
-
ST0096: Internship - Multimodal Tracking and Imaging
MERL is seeking a motivated intern to assist in developing hardware and algorithms for multimodal imaging applications. The project involves integration of radar, camera, and depth sensors in a variety of sensing scenarios. The ideal candidate should have experience with FMCW radar and/or depth sensing, and be fluent in Python and scripting methods. Familiarity with optical tracking of humans and experience with hardware prototyping is desired. Good knowledge of computational imaging and/or radar imaging methods is a plus.
Required Specific Experience
- Experience with Python and Python Deep Learning Frameworks.
- Experience with FMCW radar and/or Depth Sensors.
- Research Areas: Computer Vision, Machine Learning, Signal Processing, Computational Sensing
- Host: Petros Boufounos
- Apply Now