Internship Openings

25 / 75 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Working at MERL requires full authorization to work in the U.S and access to technology, software and other information that is subject to governmental access control restrictions, due to export controls. Employment is conditioned on continued full authorization to work in the U.S and the availability of government authorization for the release of these items, which might include without limitation, obtaining an export license or other documentation. MERL may delay commencement of employment, rescind an offer of employment, terminate employment, and/or modify job responsibilities, compensation, benefits, and/or access to MERL facilities and information systems, as MERL deems appropriate, to ensure practical compliance with applicable employment law and government access control restrictions.


  • ST2083: Deep Learning for Radar Perception

    • The Computation Sensing team at MERL is seeking a highly motivated intern to conduct fundamental research in radar perception. Expertise in deep learning-based object detection, multiple object tracking, data association, and representation learning (detection points, heatmaps, and raw radar waveforms) is required. Previous hands-on experience on open indoor/outdoor radar datasets is a plus. Familiarity with the concept of FMCW, MIMO, and range-Doppler-angle spectrum is an asset. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments with MERL in-house testbed, and prepare results for patents and publication. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Computational Sensing, Computer Vision, Dynamical Systems, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • ST1750: THz (Terahertz) Sensing

    • The Signal Processing (SP) group at MERL is seeking a highly motivated intern to conduct fundamental research in THz (Terahertz) sensing. Expertise in statistical inference, unsupervised anomaly detection, and deep learning (spatial-temporal representation learning) is required. Previous hands-on experience in THz data analysis is a plus. Familiarity with python and deep learning libraries is a must. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments with collaborators, and prepare results for patents and publication. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Computational Sensing, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • ST2082: Integrated Sensing and Communication (ISAC)

    • The Computational Sensing team at MERL is seeking a highly motivated intern to conduct fundamental research in integrated sensing and communication (ISAC) with a focus on signal processing, model-based learning, and optimization. Expertise in joint waveform/sequence optimization, integrated ISAC precoder/combiner design, model-based learning for ISAC, and downlink/uplink/active sensing under timing and frequency offsets is highly desired. Familiarity with IEEE 802.11 (ac/ax/ad/ay) standards is a plus but not required. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments using MERL in-house testbed, and prepare results for publication. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Communications, Computational Sensing, Dynamical Systems, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • OR2110: Shared Autonomy for Human-Robot Interaction

    • MERL is looking for a highly motivated and qualified intern to work on human-robot interaction (HRI) research. The ideal candidate would be a Ph.D. student with a strong background in HRI, focusing on robotic manipulation, deep learning, probabilistic modeling, or reinforcement learning. Several topics are available for consideration, including Intent Recognition in Multi-Object Scenes, Shared Autonomy, Cooperative Manipulation, Human-Robot Handovers, and Representation Learning for HRI. Experience working with robotics hardware and physics engine simulators like PyBullet, Issac Gym, or Mujoco is preferred. Proficiency in Python programming is necessary, and experience with ROS is a plus. The successful candidate will collaborate with MERL researchers, and publication of the relevant results is expected. The start date is flexible, and the expected duration of the internship is 3-4 months. Interested candidates are encouraged to apply with their recent CV and list of publications in related topics.

    • Research Areas: Artificial Intelligence, Computer Vision, Robotics
    • Host: Siddarth Jain
    • Apply Now
  • OR2115: Hierarchical Reinforcement Learning for Robotic Manipulation

    • MERL is looking for a highly motivated individual to work on long-horizon planning and decision making for robotic manipulation using large language models (LLMs) and Hierarchical RL. The research will develop novel algorithms for long-horizon task planning and execution using Hierarchical Reinforcement learning and LLMs. The ideal candidate should have experience in either one or multiple of the following topics: (Deep) Reinforcement learning, Hierarchical RL, LLMs, policy optimization and Markov Decision Processes (MDPs). Senior PhD students in machine learning and engineering with a focus on Reinforcement Learning and robotics are encouraged to apply. Prior experience working with physics engines like Mujoco, Isaac Gym, etc. is required. Prior experience working with Python and ROS is required. A successful internship will result in submission of results to peer-reviewed conference and journals. Good coding skills in Python and state-of-the-art RL environments (e.g., RL Bench) is required. The expected duration of internship is 3-4 months with flexible start dates. This internship is preferred to be onsite at MERL.

    • Research Areas: Artificial Intelligence, Machine Learning, Robotics
    • Host: Devesh Jha
    • Apply Now
  • OR2107: Robot Learning Algorithms

    • MERL is looking for a highly motivated and qualified PhD student in the areas of machine learning and robotics, to participate in research on advanced algorithms for learning control of robots and other mechanisms. Solid background and hands-on experience with various machine learning algorithms is expected, and in particular with deep learning algorithms for image processing and object detection. Exposure to deep reinforcement learning and/or learning from demonstration is highly desirable. Familiarity with the use of machine learning algorithms for system identification of mechanical systems would be a plus, along with background in other areas of automatic control. Solid experimental skills and hands-on experience in coding in Python and PyTorch are required for the position. Some familiarity with classical mechanics and computational physics engines would be helpful, but is not required. The position will provide opportunities for exploring fundamental problems in incremental learning in humans and machines, leading to publishable results. The starting date of the internship is flexible, and applications outside of the peak summer season are encouraged, too.

    • Research Areas: Artificial Intelligence, Control, Machine Learning, Robotics
    • Host: Daniel Nikovski
    • Apply Now
  • OR2111: Deep Learning for Robotic Manipulation

    • MERL is seeking a highly motivated and qualified intern to work on deep learning for visual feedback in robotic manipulation. The ideal candidate would be a Ph.D. student with a strong background in deep learning and robotic manipulation. Several topics are available for consideration, including Object Pose Estimation, Goal-driven Grasping, Diffusion policy for Industrial Tasks, and Deformable Object Manipulation. The project requires the development of novel algorithms with implementation and evaluation on a robotic platform. Preferred qualifications include experience working with a physics engine simulator like PyBullet, Isaac Gym, or Mujoco, proficiency in Python programming, and experience with ROS. The successful candidate will collaborate with MERL researchers, and publication of relevant results is expected. The start date is flexible, and the expected duration of the internship is 3-4 months. Interested candidates are encouraged to apply with their recent CV and a list of publications in related topics

    • Research Areas: Artificial Intelligence, Computer Vision, Robotics
    • Host: Siddarth Jain
    • Apply Now
  • OR2112: Time Series Analysis and Deep Learning

    • MERL is looking for a self-motivated intern to develop algorithms for time series data analytics, system identification, and deep learning. The ideal candidate would be a senior PhD student with experience in one or more of the following areas: system identification, deep learning, mathematical optimization. Strong programming skills using Python/PyTorch are expected. Experience in developing heuristics for nonconvex optimization problems and building spatial-temporal prediction models would be a plus. The intern is expected to work with MERL researchers to develop algorithms and prepare manuscripts for scientific publications. The duration of the internship is expected to be 3 months. Start date is flexible.

    • Research Areas: Artificial Intelligence, Data Analytics, Machine Learning, Optimization
    • Host: BinBin Zhang
    • Apply Now
  • OR2103: Human Robot Collaboration in Assembly Tasks

    • MERL is looking for a self-motivated and qualified candidate to work on human-robot-interaction for manipulation and assembly collaborative scenarios. The ideal candidate is a PhD student and should have experience and records in one or multiple of the following areas. 1) Control, estimation and perception for Robotic manipulation 2) Task and Motion Planning 3) Learning from demonstration algorithms applied to robotic manipulation 4) Machine learning techniques for modeling and control as well as regression and classification problems. 5) Experience in working with robotic systems and familiarity with physics engine simulators like Mujoco, Isaac Gym, PyBullet. The successful candidate will be expected to develop, in collaboration with MERL employees, state of the art algorithms to solve complex manipulation tasks that involve human and robot collaborations. Proficiency in Python and ROS are required. The expectation is that the research will lead to one or more scientific publications. The expected duration s 3-4 months, with a flexible starting date.

    • Research Areas: Artificial Intelligence, Machine Learning, Robotics
    • Host: Diego Romeres
    • Apply Now
  • OR2105: Preference-based Multi-Objective Bayesian Optimization

    • MERL is looking for a self-motivated and qualified candidate to work on Bayesian Optimization algorithms applied to industrial applications. The ideal candidate is a PhD student with experience and peer-reviewed publications in the general field of derivative-free/zeroth-order optimization, preference will be given to candidates who have contributed to theoretical advances or practical application of Bayesian optimization, especially for multi-objective optimization problems. The ideal candidate will have a strong general understanding of numerical optimization and probabilistic machine learning e.g. Gaussian process regression, and is expected to develop, in collaboration with MERL researchers, state of the art algorithms to optimize parameters for industrial processes or control systems. Proficiency in Python is required. An expected outcome of the internship is one or more peer-reviewed publications. The expected duration is 3-4 months, with flexible starting date.

    • Research Areas: Artificial Intelligence, Machine Learning, Optimization
    • Host: Diego Romeres
    • Apply Now
  • SA2074: Audio source separation and generation

    • We are seeking graduate students interested in helping advance the fields of generative audio, source separation, speech enhancement, and robust ASR in challenging multi-source and far-field scenarios. The interns will collaborate with MERL researchers to derive and implement new models and optimization methods, conduct experiments, and prepare results for publication. Internships regularly lead to one or more publications in top-tier venues, which can later become part of the intern''s doctoral work. The ideal candidates are senior Ph.D. students with experience in some of the following: audio signal processing, microphone array processing, probabilistic modeling, sequence to sequence models, and generative modeling techniques, in particular those involving minimal supervision (e.g., unsupervised, weakly-supervised, self-supervised, or few-shot learning). Multiple positions are available with flexible start date (not just Spring/Summer but throughout 2024) and duration (typically 3-6 months).

    • Research Areas: Artificial Intelligence, Machine Learning, Speech & Audio
    • Host: Gordon Wichern
    • Apply Now
  • SA2072: Multimodal Representation Learning

    • MERL is offering internship positions for PhD candidates interested in audio-visual-language multimodal learning. The role involves understanding the complex interplay between sound, visuals, and language, aiming to drive next-generation AI applications. Interns will work closely with a group of researchers at MERL to develop and implement models, with an emphasis on integrating different sensory modalities. Internships regularly lead to one or more publications in top-tier venues, which can later become part of the intern''s doctoral work. Ideal candidates are senior Ph.D. students in fields such as Audio Machine Learning, Computer Vision, or Natural Language Processing. Experience in multimodal learning is preferable. Good programming skills in Python and knowledge of deep learning frameworks such as PyTorch are essential. Multiple positions are available with flexible start date (not just Spring/Summer but throughout 2024) and duration (typically 3-6 months).

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
    • Host: Sameer Khurana
    • Apply Now
  • SA2073: Multimodal scene-understanding

    • We are looking for a graduate student interested in helping advance the field of multimodal scene understanding, with a focus on scene understanding using natural language for robot dialog and/or indoor monitoring using a large language model. The intern will collaborate with MERL researchers to derive and implement new models and optimization methods, conduct experiments, and prepare results for publication. Internships regularly lead to one or more publications in top-tier venues, which can later become part of the intern''s doctoral work. The ideal candidates are senior Ph.D. students with experience in deep learning for audio-visual, signal, and natural language processing. Good programming skills in Python and knowledge of deep learning frameworks such as PyTorch are essential. Multiple positions are available with flexible start date (not just Spring/Summer but throughout 2024) and duration (typically 3-6 months).

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Robotics, Speech & Audio
    • Host: Chiori Hori
    • Apply Now
  • MS2108: Knowledge Transfer for Deep System Identification

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Multiphysical Systems (MS) team in research on knowledge transfer methods for deep learning, e.g. meta/transfer learning to be used for system identification using data from real building energy systems. The ideal candidate is expected to be working towards a Ph.D. in applying deep learning to system identification problems, with special emphasis in one or more of: generative modeling, probabilistic deep learning, and learning for estimation/control. Fluency in PyTorch is necessary. Previous peer-reviewed publications in related research topics and/or experience with state-of-the-art generative models for time-series is a plus. Publication of results obtained during the internship is expected. The minimum duration of the internship is 12 weeks; start time is flexible with slight preference towards late Spring/early Summer 2024.

    • Research Areas: Artificial Intelligence, Control, Machine Learning, Multi-Physical Modeling
    • Host: Ankush Chakrabarty
    • Apply Now
  • CA2124: Map-building using mobile robots: Design & experimental validation

    • MERL is looking for a highly motivated individual to develop and validate map building algorithms for autonomous mobile robots. The ideal candidate will have published in one or more of these topics: planning and control of ground robots, map building, (visual) SLAM, and sensor fusion. The candidate should be proficient in ROS and C/C++, familiar with Python, and has demonstrable experience working with mobile robots. The minimum duration of the internship is 3 months; the start time is Summer/Fall 2024.

    • Research Areas: Artificial Intelligence, Control, Dynamical Systems, Optimization, Robotics
    • Host: Abraham Vinod
    • Apply Now
  • CI2075: Human-Machine Interface with Biosignal Processing

    • MERL is seeking an intern to work on research for human-machine interface with multi-modal bio-sensors. The ideal candidate is an experienced PhD student or post-graduate researcher having an excellent background in brain-machine interface (BMI), deep learning, mixed reality (XR), remote robot manipulation, bionics, and bio sensing. The expected duration of the internship is 3-6 months, with a flexible start date.

    • Research Areas: Artificial Intelligence, Machine Learning, Robotics
    • Host: Toshi Koike-Akino
    • Apply Now
  • CI2049: Efficient/Green AI

    • MERL is seeking highly motivated and qualified interns to work on efficient machine learning techniques. The ideal candidates would have significant research experience in federated learning, generative large language models, and efficient/green AI. A mature understanding of modern machine learning methods, proficiency with Python, and familiarity with deep learning frameworks are expected. Candidates at or beyond the middle of their Ph.D. program are encouraged to apply. The expected duration is 3 months long with flexible start dates.

    • Research Areas: Artificial Intelligence
    • Host: Toshi Koike-Akino
    • Apply Now
  • CI2091: Robust AI for Operational Technology Security

    • MERL is seeking a highly motivated and qualified intern to work on operational technology security. The ideal candidate would have significant research experience in cybersecurity for operational technology, anomaly detection, robust machine learning, and defenses against adversarial examples. A mature understanding of modern machine learning methods, proficiency with Python, and familiarity with deep learning frameworks are expected. Candidates at or beyond the middle of their Ph.D. program are encouraged to apply. The expected duration is 3 months with flexible start dates.

    • Research Areas: Artificial Intelligence, Machine Learning
    • Host: Ye Wang
    • Apply Now
  • CI1950: Quantum Machine Learning

    • MERL is seeking an intern to work on research for quantum machine learning (QML). The ideal candidate is an experienced PhD student or post-graduate researcher having an excellent background in quantum computing, deep learning, and signal processing. Proficient programming skills with PyTorch and PennyLane will be additional assets to this position.

    • Research Areas: Artificial Intelligence, Machine Learning, Signal Processing
    • Host: Toshi Koike-Akino
    • Apply Now
  • CI2092: Data Privacy for Machine Learning

    • MERL is seeking a highly motivated and qualified intern to work on privacy issues in machine learning. The ideal candidate would have significant research experience in private machine learning methods and defenses against membership inference attacks. A mature understanding of modern machine learning methods, proficiency with Python, and familiarity with deep learning frameworks are expected. Candidates at or beyond the middle of their Ph.D. program are encouraged to apply. The expected duration is 3 months with flexible start dates.

    • Research Areas: Artificial Intelligence, Machine Learning
    • Host: Ye Wang
    • Apply Now
  • CV2119: Conditional Video Generation

    • We seek a highly motivated intern to conduct original research in generative models for conditional video generation. We are interested in applications to various tasks such as video generation from text, images, and diagrams. The successful candidate will collaborate with MERL researchers to design and implement new models, conduct experiments, and prepare results for publication. The candidate should be a PhD student (or postdoc) in computer vision and machine learning with a strong publication record including at least one paper in a top-tier computer vision or machine learning venue such as CVPR, ECCV, ICCV, ICML, ICLR, NeurIPS, AAAI, or TPAMI. Strong programming skills, experience developing and implementing new models in deep learning platforms such as PyTorch, and broad knowledge of machine learning and deep learning methods are expected, including experience in the latest advances in conditional video generation. Start date is flexible; duration should be at least 3 months.

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    • Host: Tim Marks
    • Apply Now
  • CV2078: Anomaly Localization for Industrial Inspection

    • MERL is looking for a self-motivated intern to work on anomaly localization in the industrial inspection setting using computer vision. The relevant topics in the scope include (but are not limited to): cross-view image anomaly localization, how to train one model for multiple views and defect types, how to incorporate large foundation models in image anomaly localization, etc. Candidates with experience in image anomaly localization in industrial inspection settings (e.g., MVTec-AD or VisA datasets) are strongly preferred. The ideal candidate would be a PhD student with a strong background in computer vision and machine learning, and the candidate is expected to have published at least one paper in a top-tier computer vision, machine learning, or artificial intelligence venue, such as CVPR, ECCV, ICCV, ICML, ICLR, NeurIPS, or AAAI. Proficiency in Python programming and familiarity in at least one deep learning framework are necessary. The ideal candidate is required to collaborate with MERL researchers to develop algorithms and prepare manuscripts for scientific publications. The duration of the internship is ideally to be at least 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    • Host: Kuan-Chuan Peng
    • Apply Now
  • CV2121: Simulators and Generative AI for Task Driven Data Generation

    • MERL is looking for a self-motivated intern to develop a general-purpose simulation platform for generating computer vision datasets defined by downstream tasks. The ideal intern must have strong background in computer graphics, computer vision, and machine learning, as well as experience in using the latest graphics simulation toolboxes and physics engines. Working knowledge of recent multimodal generative AI methods will be a strong plus. The intern is expected to collaborate with researchers in the computer vision team at MERL to develop algorithms and prepare manuscripts for scientific publications.

    • Research Areas: Artificial Intelligence, Computer Vision
    • Host: Anoop Cherian
    • Apply Now
  • CV2077: Visual-LiDAR fused object detection and recognition

    • MERL is looking for a self-motivated intern to work on visual-LiDAR fused object detection and recognition using computer vision. The relevant topics in the scope include (but are not limited to): domain adaptation or generalization in visual-LiDAR object detection, data-efficient methods for visual-LiDAR object detection, open-set visual-LiDAR object detection and recognition, small object detection with visual-LiDAR input, etc. The candidates with experiences of object recognition in LiDAR are strongly preferred. The ideal candidate would be a PhD student with a strong background in computer vision and machine learning, and the candidate is expected to have published at least one paper in a top-tier computer vision, machine learning, or artificial intelligence venue, such as CVPR, ECCV, ICCV, ICML, ICLR, NeurIPS, or AAAI. Proficiency in Python programming and familiarity in at least one deep learning framework are necessary. The ideal candidate is required to collaborate with MERL researchers to develop algorithms and prepare manuscripts for scientific publications. The duration of the internship is ideally to be at least 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    • Host: Kuan-Chuan Peng
    • Apply Now
  • CV2113: Embodied Multimodal Large Language Models

    • MERL is looking for a self-motivated intern to work on problems at the intersection of multimodal large language models and embodied AI in dynamic indoor environments. The ideal candidate would be a PhD student with a strong background in machine learning and computer vision, as demonstrated by top-tier publications. The candidate must have prior experience in audio-visual AI, large language models, and simulators such as Habitat/SoundSpaces. Hands on experience in using animated 3D human shape models (e.g., SMPL and variants) is desired. The intern is expected to collaborate with researchers in computer vision and speech teams at MERL to develop algorithms and prepare manuscripts for scientific publications.

    • Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
    • Host: Anoop Cherian
    • Apply Now