TR2019-097

Joint Student-Teacher Learning for Audio-Visual Scene-Aware Dialog


Multimodal fusion of audio, vision, and text has demonstrated significant benefits in advancing the performance of several tasks, including machine translation, video captioning, and video summarization. Audio-Visual Scene-aware Dialog (AVSD) is a new and more challenging task, proposed recently, that focuses on generating sentence responses to questions that are asked in a dialog about video content. While prior approaches designed to tackle this task have shown the need for multimodal fusion to improve response quality, the best-performing systems often rely heavily on human-generated summaries of the video content, which are unavailable when such systems are deployed in real-world. This paper investigates how to compensate for such information, which is missing in the inference phase but available during the training phase. To this end, we propose a novel AVSD system using studentteacher learning, in which a student network is (jointly) trained to mimic the teacher’s responses. Our experiments demonstrate that in addition to yielding state-of-the-art accuracy against the baseline DSTC7-AVSD system, the proposed approach (which does not use human-generated summaries at test time) performs competitively with methods that do use those summaries

 

  • Related News & Events

    •  NEWS   MERL's Scene-Aware Interaction Technology Featured in Mitsubishi Electric Corporation Press Release
      Date: July 22, 2020
      Where: Tokyo, Japan
      MERL Contacts: Siheng Chen; Anoop Cherian; Bret Harsham; Chiori Hori; Takaaki Hori; Jonathan Le Roux; Tim Marks; Alan Sullivan; Anthony Vetro
      Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
      Brief
      • Mitsubishi Electric Corporation announced that the company has developed what it believes to be the world’s first technology capable of highly natural and intuitive interaction with humans based on a scene-aware capability to translate multimodal sensing information into natural language.

        The novel technology, Scene-Aware Interaction, incorporates Mitsubishi Electric’s proprietary Maisart® compact AI technology to analyze multimodal sensing information for highly natural and intuitive interaction with humans through context-dependent generation of natural language. The technology recognizes contextual objects and events based on multimodal sensing information, such as images and video captured with cameras, audio information recorded with microphones, and localization information measured with LiDAR.

        Scene-Aware Interaction for car navigation, one target application, will provide drivers with intuitive route guidance. The technology is also expected to have applicability to human-machine interfaces for in-vehicle infotainment, interaction with service robots in building and factory automation systems, systems that monitor the health and well-being of people, surveillance systems that interpret complex scenes for humans and encourage social distancing, support for touchless operation of equipment in public areas, and much more. The technology is based on recent research by MERL's Speech & Audio and Computer Vision groups.


        Demonstration Video:



        Link:

        Mitsubishi Electric Corporation Press Release
    •  
    •  NEWS   MERL Speech & Audio Researchers Presenting 7 Papers and a Tutorial at Interspeech 2019
      Date: September 15, 2019 - September 19, 2019
      Where: Graz, Austria
      MERL Contacts: Chiori Hori; Takaaki Hori; Jonathan Le Roux; Niko Moritz; Gordon Wichern
      Research Areas: Artificial Intelligence, Machine Learning, Speech & Audio
      Brief
      • MERL Speech & Audio Team researchers will be presenting 7 papers at the 20th Annual Conference of the International Speech Communication Association INTERSPEECH 2019, which is being held in Graz, Austria from September 15-19, 2019. Topics to be presented include recent advances in end-to-end speech recognition, speech separation, and audio-visual scene-aware dialog. Takaaki Hori is also co-presenting a tutorial on end-to-end speech processing.

        Interspeech is the world's largest and most comprehensive conference on the science and technology of spoken language processing. It gathers around 2000 participants from all over the world.
    •