Internship Openings

15 / 76 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Working at MERL requires full authorization to work in the U.S and access to technology, software and other information that is subject to governmental access control restrictions, due to export controls. Employment is conditioned on continued full authorization to work in the U.S and the availability of government authorization for the release of these items, which might include without limitation, obtaining an export license or other documentation. MERL may delay commencement of employment, rescind an offer of employment, terminate employment, and/or modify job responsibilities, compensation, benefits, and/or access to MERL facilities and information systems, as MERL deems appropriate, to ensure practical compliance with applicable employment law and government access control restrictions.


  • MS2106: Nonlinear Estimation of Multi-physical Systems

    • MERL is looking for a highly motivated and qualified candidate to work on estimation of multi-physical systems governed by sets of differential algebraic equations (DAEs). The research will involve study and development of estimation approaches for large-scale nonlinear systems, e.g., vapor compression cycles, with limited sensor availability. The ideal candidate will have a strong background in one or multiple of the following topics: nonlinear control and estimation, sensor selection, optimization, and active learning; with expertise demonstrated via, e.g., peer-reviewed publications. Prior programming experience in Julia/Modelica is a plus. Senior PhD students in mechanical, electrical, chemical engineering or related fields are encouraged to apply. The typical duration of internship is 3 months, and the start date is flexible.

    • Research Areas: Control, Dynamical Systems, Optimization
    • Host: Vedang Deshpande
    • Apply Now
  • ST2083: Deep Learning for Radar Perception

    • The Computation Sensing team at MERL is seeking a highly motivated intern to conduct fundamental research in radar perception. Expertise in deep learning-based object detection, multiple object tracking, data association, and representation learning (detection points, heatmaps, and raw radar waveforms) is required. Previous hands-on experience on open indoor/outdoor radar datasets is a plus. Familiarity with the concept of FMCW, MIMO, and range-Doppler-angle spectrum is an asset. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments with MERL in-house testbed, and prepare results for patents and publication. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Computational Sensing, Computer Vision, Dynamical Systems, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • ST2082: Integrated Sensing and Communication (ISAC)

    • The Computational Sensing team at MERL is seeking a highly motivated intern to conduct fundamental research in integrated sensing and communication (ISAC) with a focus on signal processing, model-based learning, and optimization. Expertise in joint waveform/sequence optimization, integrated ISAC precoder/combiner design, model-based learning for ISAC, and downlink/uplink/active sensing under timing and frequency offsets is highly desired. Familiarity with IEEE 802.11 (ac/ax/ad/ay) standards is a plus but not required. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments using MERL in-house testbed, and prepare results for publication. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Communications, Computational Sensing, Dynamical Systems, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • ST2064: Physics-informed scientific machine learning

    • The Dynamics team at MERL is seeking a highly motivated, qualified individual to join our internship program in the summer of 2024. The ideal candidate will be a Ph.D. student specializing in engineering, applied mathematics, computer science or similar fields with solid background in scientific machine learning, and deep learning. Research exposure to one of the following is very desirable but not necessary: Dynamical systems theory, operator learning (DeepONet, FNO, etc.), and Physics-informed Neural Nets (PINNs). Ideal candidate is familiar with PyTorch, TensorFlow, or Jax. Publication of results obtained during the internship is expected. The starting date is flexible and the internship will last about 12 weeks.

    • Research Areas: Computational Sensing, Dynamical Systems, Machine Learning
    • Host: Mouhacine Benosman
    • Apply Now
  • ST2025: Background Oriented Schlieren Tomography

    • The Computational Sensing team at MERL is seeking motivated and qualified individuals to develop algorithms that can perform background oriented Schlieren (BOS) tomography. The project goal is to utilize both analytical and learning-based architectures to enable the reconstruction of 3D air flows in an indoor setting from BOS measurements. Ideal candidates should be Ph.D. students and have solid background and publication record in any of the following, or related areas: imaging inverse problems, large-scale optimization, learning-based modeling for imaging, Schlieren tomography, physics informed neural networks. Publication of the results produced during our internships is expected. The duration of the internships is anticipated to be 3-6 months. Start date is flexible.

    • Research Areas: Computational Sensing, Dynamical Systems, Machine Learning, Optimization
    • Host: Hassan Mansour
    • Apply Now
  • ST2065: Data-driven estimation and control for large-scale dynamical systems

    • The Dynamics team at MERL is seeking a highly motivated, qualified individual to join our internship program in the summer of 2024. The ideal candidate will be a Ph.D. student specializing in engineering, applied mathematics, computer science or similar fields with solid background in estimation, control and dynamical systems theory. Research exposure to one of the following is very desirable but not necessary: reduced-order models (ROMs), reinforcement learning, nonlinear control, PDEs, and robust control. Publication of results obtained during the internship is expected. The starting date is flexible and the internship will last about 12 weeks.

    • Research Areas: Control, Dynamical Systems, Machine Learning
    • Host: Mouhacine Benosman
    • Apply Now
  • ST2066: Safe and robust reinforcement learning

    • The Dynamics team at MERL is seeking a motivated and qualified individual to conduct research in safe robust reinforcement learning (RL). The ideal candidate should have solid background in RL, e.g. Constrained Markov decision processes (CMDPs), and Robust MDPs theories. Knowledge of dynamical system theory and nonlinear control theory is a plus, but not a requirement. Submission of the results produced during the internship is anticipated, e.g., ICML/ICLR/NeurIPS. Duration of the internship is expected to be 3 months. Start date is flexible.

    • Research Areas: Control, Dynamical Systems, Machine Learning
    • Host: Mouhacine Benosman
    • Apply Now
  • CA2132: Optimization Algorithms for Motion Planning and Predictive Control

    • MERL is looking for a highly motivated and qualified individual to work on tailored computational algorithms for optimization-based motion planning and predictive control applications in autonomous systems (vehicles, mobile robots). The ideal candidate should have experience in either one or multiple of the following topics: convex and non-convex optimization, stochastic predictive control (e.g., scenario trees), interaction-aware motion planning, machine learning, learning-based model predictive control, mathematical programs with complementarity constraints (MPCCs), optimal control, and real-time optimization. PhD students in engineering or mathematics, especially with a focus on research related to any of the above topics are encouraged to apply. Publication of relevant results in conference proceedings or journals is expected. Capability of implementing the designs and algorithms in MATLAB/Python is required; coding parts of the algorithms in C/C++ is a plus. The expected duration of the internship is 3 months, and the start date is flexible.

    • Research Areas: Control, Dynamical Systems, Machine Learning, Optimization, Robotics
    • Host: Rien Quirynen
    • Apply Now
  • CA1940: Autonomous vehicle planning and contro in uncertain environments

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on planning and control for autonomous vehicles in uncertain surrounding environments. The research domain includes algorithms for path planning and control in environments that are uncertain and perceived by sensing and predicted according to models and data. The ideal candidate is expected to be working towards a PhD with strong emphasis in vehicle guidance and control, and to have interest and background in as many as possible of: vehicle dynamics modeling and control, sensor uncertainty modeling, data-driven prediction, predictive control for uncertain systems, motion planning. Good programming skills in MATLAB, Python are required, knowledge of C/C++, rapid prototyping systems, automatic code generation, vehicle simulation packages (CarSim, CarMaker) or ROS are a plus. The expected start of of the internship is in the late Spring/Early Summer 2022, for a duration of 3-6 months.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA2130: Motion planning for teams of ground vehicles and drones

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on trajectory generation and motion planning for heterogenous teams of mobile robots, including drones and ground vehicles, with performance and safety guarantees. The ideal candidate is expected to be working towards a PhD with strong emphasis in planning and control, and to have interest and background in as many as possible of: predictive control algorithms for linear and nonlinear systems, set-based methods in control (reachability, invariance), stochastic control for uncertain systems, SLAM and vision-based planning and control. Good programming skills in MATLAB, Python or C/C++ are required. The expected start of of the internship is flexible, with duration of 3--6 months.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA2133: Coordination, Scheduling, and Motion Planning for Ground Robots

    • MERL is looking for a highly motivated and qualified individual to work on optimization-based algorithms for coordination, scheduling, and motion planning of automated ground robots in uncertain surrounding environments. The ideal candidate should have experience in either one or multiple of the following topics: formulation of mixed-logic constraints as mixed-integer programs, connected vehicles and coordination, inter-robot collision avoidance, multi-agent scheduling, and traffic control systems. Prior experience with one or multiple traffic and/or multi-vehicle simulators (e.g., SUMO, CarSim, CARLA, etc.) is a plus. PhD students in engineering or mathematics, especially with a focus on research related to any of the above topics are encouraged to apply. Publication of relevant results in conference proceedings or journals is expected. Capability of implementing the designs and algorithms in MATLAB/Python is required; coding parts of the algorithms in C/C++ is a plus. The expected duration of the internship is 3 months, and the start date is flexible.

    • Research Areas: Control, Dynamical Systems, Machine Learning, Optimization, Robotics
    • Host: Rien Quirynen
    • Apply Now
  • CA2127: Spacecraft Guidance, Navigation, and Control

    • MERL is seeking highly motivated interns for research positions in guidance, navigation, and control of spacecraft. The ideal candidates are PhD students with experience in one or more of the following topics: astrodynamics, the three-body problem, relative motion dynamics, rendezvous, landing, attitude control, orbit control, orbit determination, nonlinear estimation, and optimization-based control. Publication of results produced during the internship is expected. The duration of the internships are 3-6 months, and the start dates are flexible.

    • Research Areas: Control, Dynamical Systems, Optimization
    • Host: Avishai Weiss
    • Apply Now
  • CA2131: Collaborative Legged Robots

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on control and planning algorithms for legged robots for support activities of and collaboration with humans. The ideal candidate is expected to be working towards a PhD with strong emphasis in robotics control and planning and to have interest and background in as many as possible of: motion planning algorithms, control for legged robot locomotions, legged robots, perception and sensing with multiple sensors, SLAM, vision-based control. Good programming skills in Python or C/C++ are required. The expected start of of the internship is flexible, with duration of 3--6 months.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA2124: Map-building using mobile robots: Design & experimental validation

    • MERL is looking for a highly motivated individual to develop and validate map building algorithms for autonomous mobile robots. The ideal candidate will have published in one or more of these topics: planning and control of ground robots, map building, (visual) SLAM, and sensor fusion. The candidate should be proficient in ROS and C/C++, familiar with Python, and has demonstrable experience working with mobile robots. The minimum duration of the internship is 3 months; the start time is Summer/Fall 2024.

    • Research Areas: Artificial Intelligence, Control, Dynamical Systems, Optimization, Robotics
    • Host: Abraham Vinod
    • Apply Now
  • CA2125: Multi-agent systems for resource monitoring

    • MERL is looking for a highly motivated individual to develop planning and control algorithms for multi-agent systems for resource monitoring. The ideal candidate has experience in multi-agent motion planning and data-driven, sequential decision-making. The ideal candidate will have published in one or more of these topics: planning over discrete spaces, statistical estimation and hypothesis testing, reinforcement learning, and planning and control of aerial and ground robots. The candidate should be proficient in Python. Additional knowledge of ROS and C/C++ and demonstrable experience in ground and aerial robots are a plus. The minimum duration of the internship is 3 months; the start time is Summer/Fall 2024.

    • Research Areas: Applied Physics, Control, Dynamical Systems, Optimization, Robotics
    • Host: Abraham Vinod
    • Apply Now