Internship Openings

6 / 27 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Qualified applicants for MERL internships are individuals who have or can obtain full authorization to work in the U.S. and do not require export licenses to receive information about the projects they will be exposed to at MERL. The U.S. government prohibits the release of information without an export license to citizens of several countries, including, without limitation, Cuba, Iran, North Korea and Syria (Country Groups E:1 and E:2 of Part 740, Supplement 1, of the U.S. Export Administration Regulations).

Rising to the challenges of COVID-19

MERL believes that having an internship be located in MERL's office allows for particularly good interaction between you and those that you will be working with at MERL. In addition, some intern projects, e.g., ones that require specialized laboratory equipment, can only be pursued in our office. Going forward, we expect that all internships will be in-person at MERL. If health and safety concerns do not permit this, we will reevaluate our plans and some internships might have to become remote.

It is a requirement at MERL that everyone working in MERL's space must be fully vaccinated. In order for you to have your internship at MERL, you will have to prove that you are fully vaccinated when you arrive at MERL, i.e., by showing your vaccination card.

  • DA1841: High-fidelity CFD for simulation and optimization

    • The Data Analytics Group at MERL is seeking a highly motivated, qualified individual to join our internship program in the summer of 2022. The ideal candidate will be a Ph.D. student specializing in fluid dynamics, with solid background in turbulence modeling and computational fluid dynamics (CFD). Research exposure to one of the following is very desirable but not necessary: PDE-constrained optimization, model reduction techniques, and Physics-informed Neural Nets (PINNs). Ideal candidate is familiar with open-source CFD solvers such as OpenFOAM or SU2. Publication of results obtained during the internship is expected. The starting date is flexible and the internship will last about 12 weeks.

    • Research Areas: Data Analytics, Dynamical Systems, Optimization
    • Host: Saleh Nabi
    • Apply Now
  • CA1795: Path Planning and Control for Autonomous Articulated Vehicles

    • MERL is seeking a highly motivated and qualified intern to collaborate with multiple researchers on the implementation and experimental validation of algorithms for path/motion planning, optimal control and reference tracking in autonomous articulated vehicles. The ideal candidate has a background in either path planning or model predictive control (MPC) for autonomous (articulated) vehicles, and the candidate should be familiar with optimal control, vehicle dynamics, A* search, Matlab and Simulink, and C/C++ code generation. Any experience with dSPACE (e.g., MicroAutoBox or Scalexio) is a plus. MS or PhD students in control, robotics, electrical and mechanical, or related areas, are encouraged to apply. Start date for this internship is as soon as possible, and the expected duration is about 3-6 months.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Rien Quirynen
    • Apply Now
  • CA1707: Autonomous vehicles guidance and control

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on planning and control for autonomous vehicles. The research domain includes algorithms for path planning, vehicle control, high level decision making, sensor-based navigation, driver-vehicle interaction. The ideal candidate is expected to be working towards a PhD with strong emphasis in vehicle guidance and control, and to have interest and background in as many as possible of: vehicle dynamics modeling and control, predictive control algorithms linear and nonlinear systems, motion planning, convex, non-convex, and mixed -integer optimization, statistical estimation, cooperative control. Good programming skills in MATLAB, Python or C/C++ are required, knowledge of rapid prototyping systems, automatic code generation or ROS is a plus. The expected start of of the internship is in the late Spring/Early Summer 2022, for a duration of 3-6 months.

    • Research Areas: Control, Dynamical Systems, Optimization
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1728: Safe data-driven control of dynamical systems under uncertainty

    • MERL is looking for a highly motivated individual to work on safe control of data-driven, uncertain, dynamical systems. The research will develop novel optimization and learning-based control algorithms to guarantee safety and performance in various industrial applications, including autonomous driving. The ideal candidate should have experience in either one or multiple of the following topics: optimal control under uncertainty, (robust and stochastic) model predictive control, (convex and non-convex) optimization, and (reinforcement and statistical) learning. Ph.D. students in engineering or mathematics with a focus on control, optimization, and learning are encouraged to apply. A successful internship will result in submission of relevant results to peer-reviewed conference proceedings and journals, and development of well-documented (Python/MATLAB) code for MERL. The expected duration of the internship is 3-6 months, and the start date is Summer 2022.

    • Research Areas: Artificial Intelligence, Control, Dynamical Systems, Optimization, Robotics
    • Host: Abraham Vinod
    • Apply Now
  • CA1741: Learning for Connected Vehicles

    • MERL is seeking a highly motivated intern to collaborate with the Control for Autonomy team in the development of learning technologies for Connected Vehicles. The intern will conduct research in the development of methods for learning/optimization of Advanced Driver Assistance Systems (ADAS) using data-sharing between connected vehicles and/or infrastructure. The ideal candidate has knowledge of at least one of machine learning, estimation, connected vehicles, and vehicle control systems. Knowledge of one or more traffic and/or multi-vehicle simulators (SUMO, Vissim, etc.) is a plus. Good programming skills in Matlab are required and knowledge in Python or C/C++ is a merit. PhD students in engineering, mathematics, or similar are encouraged to apply. The expected duration of the internship is 3-6 months. The start date is flexible.

    • Research Areas: Control, Dynamical Systems, Machine Learning
    • Host: Marcel Menner
    • Apply Now
  • CI1733: ML for GNSS-based Applications

    • MERL is seeking a highly motivated, qualified intern to work on machine learning for Global Navigation Satellite System (GNSS) applications. The ideal candidate is working towards a PhD and is expected to develop innovative machine learning technologies to increase accuracy and integrity of GNSS-based positioning systems. Candidates should have strong knowledge about as many as possible of GNSS signal processing for multipath mitigation, handling RINEX data, neural network and learning techniques, such as feature extraction, deep machine learning, reinforcement learning, domain adaptation, and distributed learning. Proficient programming skills with PyTorch, Matlab, and C++, and strong mathematical analysis will be additional assets to this position. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply.

    • Research Areas: Communications, Dynamical Systems, Machine Learning, Signal Processing
    • Host: K.J. Kim
    • Apply Now