Internship Openings

2 / 22 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Working at MERL requires full authorization to work in the U.S and access to technology, software and other information that is subject to governmental access control restrictions, due to export controls. Employment is conditioned on continued full authorization to work in the U.S and the availability of government authorization for the release of these items, which might include without limitation, obtaining an export license or other documentation. MERL may delay commencement of employment, rescind an offer of employment, terminate employment, and/or modify job responsibilities, compensation, benefits, and/or access to MERL facilities and information systems, as MERL deems appropriate, to ensure practical compliance with applicable employment law and government access control restrictions.


  • ST0105: Internship - Surrogate Modeling for Sound Propagation

    • MERL is seeking a motivated and qualified individual to work on fast surrogate models for sound emission and propagation from complex vibrating structures, with applications in HVAC noise reduction. The ideal candidate will be a PhD student in engineering or related fields with a solid background in frequency-domain acoustic modeling and numerical techniques for partial differential equations (PDEs). Preferred skills include knowledge of the boundary element method (BEM), data-driven modeling, and physics-informed machine learning. Publication of the results obtained during the internship is expected. The duration is expected to be at least 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Dynamical Systems, Machine Learning, Multi-Physical Modeling
    • Host: Saviz Mowlavi
    • Apply Now
  • CA0148: Internship - Motion Planning and Control for Autonomous Articulated Vehicles

    • MERL is seeking an outstanding intern to collaborate in the development of motion planning and control for autonomous articulated vehicles. The ideal candidate is expected to be working towards a PhD in electrical, mechanical, aerospace engineering, robotics, control or related areas, with a strong emphasis on motion planning and control, possibly with applications to ground vehicles, to have experience in at least some of path/motion planning algorithms (A*, D*, graph-search) and optimization-based control (e.g., model predictive control), to have excellent coding skills in MATLAB/Simulink and a strong publication record. The expected start date is the Spring/Early Summer 2025 and the expected duration is 6-9 months, depending on candidate availability and interests.

      Required Specific Experience

      • Path/motion planning algorithms (A*, D*, graph-search)
      • Nonlinear model predictive control
      • Programming in Matlab/Simulink
      • Applications to mobile robots or vehicles

      Additional Useful Experience

      • Nonlinear MPC Design in CasADi
      • Code generation tools and dSPACE
      • Applications to autonomous vehicles and articulated vehicles

    • Research Areas: Control, Dynamical Systems, Robotics
    • Host: Stefano Di Cairano
    • Apply Now