Internship Openings

6 / 65 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Qualified applicants for MERL internships are individuals who have or can obtain full authorization to work in the U.S. and do not require export licenses to receive information about the projects they will be exposed to at MERL. The U.S. government prohibits the release of information without an export license to citizens of several countries, including, without limitation, Cuba, Iran, North Korea, Sudan and Syria (Country Groups E:1 and E:2 of Part 740, Supplement 1, of the U.S. Export Administration Regulations).

Rising to the challenges of COVID-19

The COVID pandemic has impacted every aspect of life-how we live, work, and interact. At MERL, we are committed to maintaining our internship program through these challenging times.

MERL continues to actively seek candidates for research internships -- some of the posted positions are immediately available, while others target the summer of 2021. Please consider applying for positions of interest. Our researchers will follow up to schedule an interview by phone or video conference for qualified candidates.

Due to the situation with the COVID-19 pandemic, our current internships are mostly remote. Next summer we hope the situation will be better and our internships will be at MERL, but if it is not, most internships will continue to be remote. However, some of the internships require onsite work. Please check for any specific requirements for onsite work in the job description.


  • MS1571: Data-based Dynamic Modeling of Vapor Compression Systems

    • MERL is seeking a motivated and qualified individual to conduct research in dynamic modeling of vapor compression systems. Knowledge of data-based modeling techniques such as neural network and support vector regression is required. Experience in working with thermo-fluid systems is preferred. The intern is expected to collaborate with MERL researchers to build models, develop algorithms, and prepare manuscripts for scientific publications. Senior Ph.D. students in applied mathematics, chemical/mechanical engineering and other related areas are encouraged to apply. The expected duration of the internship is 3 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Multi-Physical Modeling
    • Host: Hongtao Qiao
    • Apply Now
  • MS1563: Estimation and Optimization for Large-Scale Systems

    • MERL is seeking a motivated graduate student to research methods for state and parameter estimation and optimization of large-scale systems for process applications. Representative applications include large vapor-compression cycles and other multiphysical systems for energy conversion that couple thermodynamic, fluid, and electrical domains. The ideal candidate would have a solid background in control and estimation, numerical methods, and optimization; strong programming skills and experience with Julia/Python/Matlab are also expected. Knowledge of the fundamental physics of thermofluid flows (e.g., thermodynamics, heat transfer, and fluid mechanics), nonlinear dynamics, or equation-oriented languages (Modelica, gPROMS) is a plus. The expected duration of this internship is 3 months.

    • Research Areas: Control, Multi-Physical Modeling, Optimization
    • Host: Chris Laughman
    • Apply Now
  • MD1593: Design Optimization for Electric Machines

    • MERL is seeking a motivated and qualified intern to conduct research on design optimization of electrical machines. The ideal candidate should have solid background and demonstrated research experience in mathematical optimization methods, especially in topology optimization, robust optimization, sensitivity analysis, and machine learning techniques. Hands-on experiences with the implementation of optimization algorithms, machine learning and deep learning methods are highly desirable. Knowledge and experience with electric machine principle, design and finite-element analysis is a strong plus. Senior Ph.D. students in related expertise are encouraged to apply. Start date for this internship is flexible and the duration is about 3-6 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Machine Learning, Multi-Physical Modeling, Optimization
    • Host: Bingnan Wang
    • Apply Now
  • MD1479: Electrical Power System Modeling Simulation

    • MERL is seeking a motivated and qualified individual to conduct research in modeling, simulation and control of aircraft electrical power system. The ideal candidate should have solid backgrounds in dynamic modeling and simulation of power electronics and electrical machine, and transient analysis of overall electrical power system. Demonstrated experience in physical modeling and simulation software/language such as Modelica or Simscape is a necessity. Knowledge of aircraft dynamics and aerodynamics is a big plus. Senior Ph.D. students in aerospace, electrical engineering, control are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.

    • Research Areas: Dynamical Systems, Electric Systems, Multi-Physical Modeling
    • Host: Yebin Wang
    • Apply Now
  • MD1558: Symbolic regression

    • MERL is seeking a self-motivated intern to conduct fundamental research in the area of symbolic regression and deep learning for applications of recovering mathematical expressions or physical laws. The ideal candidate would be a senior PhD student with solid background in machine learning and strong publication record in top-tier venues. Prior experience in symbolic regression is strongly preferred. Very good Python, Pytorch/Tensorflow, and Matlab skills are required. The intern is expected to collaborate with MERL researchers to build models, develop algorithms, and prepare manuscripts for scientific publications. The expected duration of the internship is 3 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Machine Learning, Multi-Physical Modeling, Optimization
    • Host: Dehong Liu
    • Apply Now
  • MD1381: Electric Motor Design

    • MERL is seeking a motivated and qualified individual to conduct research in design, modeling, and simulation of electrical machines. The ideal candidate should have solid backgrounds in modeling (including model reduction)/co-simulation of electromagnetics and thermal dynamics of electrical machines, and demonstrated capability to publish results in leading conferences/journals. Experience with ANSYS, COMSOL, and real-time control experiments involving motor drives is a strong plus. Senior Ph.D. students in electrical or mechanical engineering are encouraged to apply. Start date for this internship is flexible and the duration is about 3-6 months.

    • Research Areas: Applied Physics, Electric Systems, Multi-Physical Modeling
    • Host: Bingnan Wang
    • Apply Now