Extended Object Tracking with Automotive Radar Using Learned Structural Measurement Model


This paper presents a data-driven measurement model for extended object tracking (EOT) with automotive radar. Specifically, the spatial distribution of automotive radar measurements is modeled as a hierarchical truncated Gaussian with structural geometry parameters (e.g., truncation bounds, their orientation, and a scaling factor) learned from the training data. The contribution is twofold. First, the learned measurement model can provide an adequate resemblance to the spatial distribution of real-world automotive radar measurements. Second, large-scale offline training datasets can be leveraged to learn the geometry-related parameters and offload the computationally demanding model parameter estimation from the state update step. The learned structural measurement model is further incorporated into the random matrix-based EOT approach with a new state update step. The effectiveness of the proposed approach is verified on the nuScenes dataset.