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Abstract—This paper presents a data-driven measurement
model for extended object tracking (EOT) with automotive
radar. Specifically, the spatial distribution of automotive radar
measurements is modeled as a hierarchical truncated Gaussian
with structural geometry parameters (e.g., truncation bounds,
their orientation, and a scaling factor) learned from the training
data. The contribution is twofold. First, the learned measurement
model can provide an adequate resemblance to the spatial dis-
tribution of real-world automotive radar measurements. Second,
large-scale offline training datasets can be leveraged to learn
the geometry-related parameters and offload the computationally
demanding model parameter estimation from the state update
step. The learned structural measurement model is further
incorporated into the random matrix-based EOT approach with
a new state update step. The effectiveness of the proposed
approach is verified on the nuScenes dataset.

Index Terms—Automotive radar, extended object tracking,
random matrix, autonomous driving, nuScenes.

I. INTRODUCTION

Automotive radar plays an important role in autonomous
driving, as it provides reliable environmental perception in all-
weather conditions with affordable cost. With the advances in
radar technology, modern radar sensors can resolve multiple
detection points per object. The tracking of an object that gen-
erated multiple detections is called extended object tracking
(EOT). Compared to conventional point object tracking, EOT
can lead to improved tracking capability as multiple detections
allow us to not only estimate the object kinematic state more
precisely but also to infer the object extent state. An elaborate
overview of EOT literature can be found in [1].

A key component for EOT is the measurement model,
which needs to capture the spatial characteristics of radar
measurements. One modeling approach is to assume that the
extended object has a fixed number of reflection points located
on a rigid body shape [2]–[4]. A challenge with this approach
is that it requires data association between the fixed set of
points and radar measurements. It is also possible to derive the
measurement model using a physics-based approach [2], [5],
which usually requires some expert knowledge and manual
adaption. The most common approach assumes that these
radar measurements are spatially distributed as a function of
individual measurement likelihoods, also referred to as the
spatial distribution.

This work was done during Yuxuan Xia’s internship at MERL.

The spatial distribution of automotive radar measurements
can be generally divided into three categories: 1) contour
models, which reflect the measurement distribution along the
object contour; 2) surface models, which assume that the
measurements are generated from the inner surface of objects;
and 3) surface-volume models, which balance between the
above two models with more realistic features. For the contour
model, typical examples include rectangular shape models
[6], [7], the hypersurface model [8]–[10] and the C B-Spline
model [11]. A widely used surface model is the random matrix
(RM) approach [12]–[16], which assumes an elliptic object
shape. The surface model can lead to computationally simpler
algorithms than the contour model, which uses more flexibility
to describe more complex shapes.

The spatial characteristics of real-world automotive radar
measurements are, however, more complex and cannot be
well described by either the contour model or the surface
model, see Fig. 1 (a) for an illustration. Two observations
can be made from Fig. 1 (a); 1) the measurement density
is much lower at the center than in a vicinity around outer
edges; and 2) measurements exhibit self-occlusion features:
the measurement density is dominant at object parts that are in
sight of the automotive radar sensor. These observations have
motivated recent developments of surface-volume models,
including the variational Gaussian mixture model [18], [19],
the volcanormal measurement model [20], and the hierarchical
truncated Gaussian (HTG) measurement model [21], [22].

The HTG measurement model can adequately approximate
the spatial distribution of real-world automotive radar mea-
surements on vehicles. It has been integrated into the RM-
based approach with a modified state update step and online
truncation bound estimation in [21] for full-view measure-
ments and in [22] for partial-view measurements due to object
self-occlusion. In this paper, we take one step further to offload
the bound estimation in the state update step by leveraging
large-scale offline training datasets. Particularly, we propose
to learn the geometry-related structural model parameters, e.g.,
the (relative) truncation bounds, their orientation and a scaling
factor, of the HTG measurement model and leave the state-
related parameters such as the kinematic mean and extent
covariance matrix in the measurement likelihood function.
Then, the learned structural measurement model is utilized
in the EOT algorithm proposed in [21] and [22]. This is
in contrast to the full data-driven approach [18], [19] where978-1-7281-8942-0/20/$31.00 ©2020 IEEE
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Fig. 1: (a) scatter plot of accumulated automotive radar measurements of vehicles in a unit coordinate system from the nuScenes dataset [17]; (b) the truncated
Gaussian p(y|ξ) for the measurement source y with parameters h(x) = [0, 0]T , X = diag([1, 1]), ρ = 0.183, θ = 0.763, B = [0.675, 0.670, 0.611, 0.648],
obtained via offline training of the measurements in (a); (c) the resulting spatial distribution p(z|ξ) with noise covariance RUC = [0.036, 0.001; 0.001, 0.036].

the full object extent is learned during the offline training
phase. Our structural learning approach can be more robust to
measurement model mismatch between the training data and
new measurements. The resulting EOT algorithm is validated
using the real-world nuScenes dataset [17].

II. PROBLEM FORMULATION

In this paper, we focus on single EOT. We define the
object state as a tuple ξk = (xk, Xk) with xk denoting
the kinematic state and Xk, a symmetric and positive def-
inite matrix, denoting the extent state. The kinematic state
xk = [pk,x, pk,y, φk, vk, ωk]T comprises the position of the
object center given by pk,x and pk,y , the heading φk, the
velocity vk, and the yaw rate ωk. For object with rectangular
shape (e.g., vehicles), its length l and width w can be obtained
from the eigen-decomposition of Xk.

We receive nk measurements Zk = {zjk}
nk
j=1 at each time

step k. The objective of object tracking is to recursively
compute the posterior density of the object state p(ξk|Z1:k)
given all measurements Z1:k = {Z1, . . . , Zk} up to and
including the current time step k using Bayesian estimation.
The object state ξk with corresponding uncertainty measures
can then be extracted from the posterior density p(ξk|Z1:k).

Given the posterior density p(ξk−1|Z1:k−1) at time step k−
1 and the transition density p(ξk|ξk−1), the predicted density
is given by the prediction step

p(ξk|Z1:k−1) =

∫
p(ξk−1|Z1:k−1)p(ξk|ξk−1)dξk−1. (1)

This density is then updated using measurements Zk via the
Bayes’ rule,

p(ξk|Z1:k) ∝ p(ξk|Z1:k−1)p(Zk|ξk), (2)

where p(Zk|ξk) =
∏nk

j=1 p(z
j
k|ξk) is the joint measurement

likelihood with p(zjk|ξk) denoting the spatial distribution. We
approximate the predicted and posterior state densities such
that they are all of the same functional form, which allows a
recursive use of the prediction and update functions.

III. HIERARCHICAL TRUNCATION MODEL

In this section, we present the HTG spatial distribution for
modeling noisy automotive radar measurements and show how
the distribution can be learned from the offline training data.

A. Hierarchical Truncated Measurement Model

Each detection point z is modeled as a noisy measurement
of a noise-free measurement source y. The distribution p(z|y)
that models the sensor noise is Gaussian N (z; y,R) where R
is the measurement noise covariance matrix. The distribution
p(y|ξ) that models the spatial characteristics of the measure-
ment source is a truncated Gaussian with the form

T N (y;h(x), ρX,D) =
1D(y)

cD
N (y;h(x), ρX), (3)

where ρ is a scaling factor, D is the density support, 1D(·) is
the indicator function on D, and cD is the normalization factor
such that (3) integrates to one. Note that we use generic D
and cD to symbolize the truncated area and the normalization
constant in the equations for the sake of simplicity, although
D and cD might be changing from equation to equation.

The truncated area can be fully specified by the object
center h(x), the truncation bounds B , [a1, a2, b1, b2], and
an orientation θ with respect to the horizontal axis. One or
more truncation bounds can be set to infinity to model partial-
view measurements caused by the self-occlusion [22]. Also,
note that in contrast to the HTG model introduced in [7],
the orientation of the truncated area considered in this work
does not need to be aligned with the object orientation. This
leads to a better modeling of the feature that the vehicle
wheels and wheel houses are typical measurement sources.
An illustrative example of p(y|ξ) is given in Fig. 1 (b). The
resulting measurement spatial distribution can be computed
by marginalizing out the measurement source,

p(z|ξ) =

∫
p(z|y)p(y|ξ)dy

=
1

cD

∫
D

N (z; y,R)N (y;h(x), ρX)dy, (4)

For the given truncated Gaussian p(y|ξ) in Fig. 1 (b), the
resulting spatial distribution p(z|ξ) is shown in Fig. 1 (c) with
a given noise covariance matrix R.

B. Learning Hierarchical Truncated Measurement Model

We assume that the object states are available as ground
truth, and that the training data to learn the model consists of a
set of N two-dimensional accumulated data points in a global



coordinate system, ZGC = {zjGC}Nj=1, generated by a HTG
with given parameter values. The parameters of the model
are unknown and the objective is therefore to estimate the
parameters given the available data. The maximum likelihood
(ML) estimate can be obtained by maximizing the joint
measurement likelihood with respect to the parameters that
the training data ZGC condition on.

1) Dimension Reduction: To obtain a hierarchical trunca-
tion model that well describes the spatial characteristics of
automotive radar detections from vehicles, we need to collect
a large amount of data samples to account for vehicles of
different size and with different poses. To avoid collecting data
in such a complex space, we apply the dimension reduction
technique proposed in [18]. Specifically, the radar detections
in the global coordinate system are first transformed to the
object coordinate system to obtain ZOC = {zjOC}Nj=1, and
then the measurements in the normalized object coordinate
system ZUC = {zjUC}Nj=1 are given by

zUC = diag ([2/l, 2/w]) zOC, (5)

see Fig. 1 (a) for an illustration. After the dimension reduction,
the positions of all vehicle detections are transformed to a
normalized object coordinate system that are independent of
the object states, e.g., the position, length and width.

2) Offline ML Estimation of Model Parameters: The ML
estimate for the coordinate-transformed training data is given
by

arg max
ρ,B,θ,RUC

1

cND

∏
zUC∈ZUC

∫
D

N (zUC; y,RUC)N (y; 02×1, ρI2)dy,

(6)
where I2 is an identity matrix. Computing (6) involves evalu-
ating the convolution of a bivariate truncated Gaussian and a
bivariate Gaussian , which is intractable in general. To obtain
a tractable solution of (6), we assume that the noise covariance
RUC in the normalized object coordinate has the form

RUC = M(θ)diag([r1, r2])M(θ)T, (7)

where M(θ) is the counterclockwise rotation matrix. Obtain-
ing the ML estimate of (6) is then equivalent to obtaining

arg min
ρ,B,θ,r1,r2

−
∑

zUC∈ZUC

log

∫
D

N (y; 02×1, ρI2)×

N (M(−θ)zUC; y,diag([r1, r2])) dy +N log cD, (8)

where we further transform the measurements ZUC to a new
coordinate system such that the orientation of the truncated
area is now aligned with the axis and that the transformed
noise covariance is a diagonal matrix. With the new parame-
terization, the above cost function of the ML estimation can
be computed as a product of two univariate Gaussians and,
hence, decoupled. Specifically, we can rewrite (8) by applying
the convolution formula as

arg min
ρ,B,θ,r1,r2

−
∑

[zx,zy ]T∈ZUC

log

(
N (z̃x; 0, r1 + ρ)

×N (z̃y; 0, r2 + ρ)− λ(z̃x, a1, b1, r1)
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Fig. 2: Diagram of proposed random matrix approach for learned HTG model.

× λ(z̃y, a2, b2, r2)(1− cD)

)
+N log cD, (9)

s.t. ρ ∈ (0, 1], θ ∈ [−π/2, π/2], {B, r1, r2} ∈ [0,∞),

where

[z̃x, z̃y] = [cos(θ)z′x + sin(θ)z′y,− sin(θ)z′x + cos(θ)z′y],

cD = 1−
(
(Φ(b1ρ

−1/2)− Φ(−a1ρ
−1/2))

× (Φ(b2ρ
−1/2)− Φ(−a2ρ

−1/2))
)
,

λ(z̃, a, b, r) = γ(a, b, r)

(
Φ

(
z̃ + a− ε(z̃, r)

β(r)

)
− Φ

(
z̃ − b− ε(z̃, r)

β(r)

))
exp

(
− z̃z̃

2(r + ρ)

)
,

ε(z̃, r) = rz̃(r + ρ)−1, β(r) = r1/2ρ1/2(r + ρ)−1,

γ(a, b, r) =

√
2πβ(r)

2πr1/2ρ1/2
(
Φ(−bρ−1/2)− Φ(aρ−1/2)

) ,
with Φ(·) denoting the cumulative density function (CDF)
of a standard normal distribution. The ML estimate of all
unknown parameters can be found by using the coordinate
descent optimization which iteratively determines a coordinate
(one of unknown parameters here) and minimizes (9) over the
selected coordinate with proper constraints (e.g., the bounds
B are non-negative) while fixing all other coordinates.

3) Measurement Model Dependence on Aspect Angles:
Automotive radar measurements are likely reflected from parts
of the vehicle that are in sight of the radar sensor. To account
for this self-occlusion feature, we can split the training data
set into groups according to the annotated aspect angle in the
training dataset [18]

φ′ = φSC − atan2(py,SC, px,SC), (11)

where φSC and [px,SC, py,SC]T, respectively, denote the object
orientation and center position in the sensor coordinate sys-
tem. Then the conditional measurement models on the aspect
angle can be learning using the above ML estimation; see
Fig. 3 for an illustration.

IV. RANDOM MATRIX APPROACH FOR LEARNED
HIERARCHICAL TRUNCATION MODEL

In this section, we introduce the modified RM approach
with the learned hierarchical truncation model in Fig. 2. In
particular, we present a new RM state update step. It is
assumed that both the predicted and posterior densities have
the factorized form [13]

p(ξk|Z1:k′) ≈ p(xk|Z1:k′)p(Xk|Z1:k′) (12)
= N (xk;mk|k′ , Pk|k′)IW(Xk; νk|k′ , Vk|k′),



where k′ ∈ {k − 1, k}. The kinematic state xk is Gaussian
distributed with mean mk|k′ and covariance matrix Pk|k′ ,
whereas the extent matrix Xk is inverse-Wishart distributed
with νk|k′ degrees of freedom and scale matrix Vk|k′ .

A. Prediction Step

We assume that the state transition density is approximated
as a product of Gaussian and Wishart distributions [12]

p(ξk|ξk−1) ≈ p(xk|xk−1)p(Xk|Xk−1, xk−1) = (13)

N (xk; g(xk−1), Q)W(Xk;κk−1, Exk−1
Xk−1E

T
xk−1

/κk−1),

where g(·) denotes the (nonlinear) motion model, Q denotes
the process noise covariance and Ex denotes the transforma-
tion matrix, typically a rotation matrix depending on kinematic
state x. Given the state transition density (13) and the posterior
density p(ξk−1|Z1:k−1) in (12), the predicted parameters
{m,P, v, V }k|k−1 of p(ξk|Z1:k−1) are [13]:

mk|k−1 = g(mk−1|k−1), (14a)

Pk|k−1 = Gk−1Pk−1|k−1G
T
k−1 +Qk−1, (14b)

νk|k−1 = 6 + e−Ts/τ (νk−1|k−1 − 6), (14c)

Vk|k−1 = e−Ts/τEmk−1
Vk−1|k−1E

T
mk−1

, (14d)

where Gk−1 = ∇xg(x)|x=mk−1|k−1
, Ts is the sampling time

and τ is a maneuvering correlation constant. The kinematic
state prediction in (14a) and (14b) follows the standard
prediction step of a (nonlinear) Kalman filter, whereas the
extent state prediction is given by (14c) and (14d).

B. Update Step with Learned HTG Measurement Model

As the learned HTG measurement model depends on the
object state, the object state is updated in a recursive fashion.
The complete state update step for the learned hierarchical
truncation model runs iteratively over two building blocks: 1)
selecting a learned hierarchical truncation model conditioned
on the aspect angle, and 2) object state update using converted
measurement statistics [21], until a convergence criteria is met.
From one iteration to the next, a refined HTG model can be
obtained by having a more accurate object state estimate.

Specifically, at the t-th iteration, we first compute the aspect
angle (11) using the updated object state ξ(t−1)

k|k estimated at
the (t − 1)-th iteration, and then we select a learned HTG
measurement model. The RM approach uses the statistics
(mean and spread) of Gaussian distributed measurements to
update the predicted state density [12], [13]. To integrate the
HTG measurement model into the state update step of RM, an
effective way is to construct Gaussian measurement statistics
using the HTG distributed measurements [21].

The procedure is given as follows; refer [21] for more de-
tails. We first compute the analytical mean and spread of nck =
nk(1−cDk

)/cDk
pseudo measurements that follow a truncated

Gaussian distribution with density support Dc
k = R2 \ Dk.

Next, we convert the learned sensor noise covariance RUC and
the computed pseudo measurement statistics from normalized
object coordinate system to the global coordinate system using
ξ

(t−1)
k|k . Then we can take the weighted sum of the trans-

formed pseudo measurement mean/spread and the received

measurement mean/spread to obtain the converted Gaussian
measurement mean ¯̆zk and spread ΣZ̆k

. Given the learned
HTG model (4) and the predicted density p(ξk|Z1:k−1), the
updated parameters {m,P, v, V }k|k determining the posterior
density are given as [13]:

mk|k = mk|k−1 +Kε, (15a)
Pk|k = Pk|k−1 −KHPk|k−1, (15b)
νk|k = νk|k−1 + (nk + nck), (15c)

Vk|k = Vk|k−1 + N̂ + Ẑ, (15d)

where

N̂ = X̂1/2S−1/2εεTS−T/2X̂T/2, ε = z̆k −Hmk|k−1

Ẑ = X̂1/2R̂−1/2ΣZ̆k
R̂−T/2X̂T/2,

R̂ = ρX̂ +R, X̂ = Vk|k−1/(νk|k−1 − 6),

S = HPk|k−1H
T + R̂/(nk + nck), K = Pk|k−1HS

−1.

At the first iteration, we may use the predicted state estimate at
time step k to initialize the algorithm by setting ξ(0)

k|k = ξk|k−1.
Compared with our previous update step of [21] and [22],

the update step for the learned HTG model directly uses the
offline learned model parameters B, θ, ρ and RUC. This
makes the new update step computationally simpler as it skips
the bounds update and converges faster. By incorporating the
learned measurement model into the update step, the proposed
method also shows improved capability of EOT with sparse
measurements.

V. EXPERIMENTAL VALIDATION

The real-world automotive radar data from the nuScenes
dataset [17] are used to learn the geometry-related model
parameters. The annotated keyframe for radar measurements
is sampled at 2 Hz for 1000 scenes of 20 seconds duration.
The ego vehicle is mounted with five 77-GHz FMCW radars
at the four corners and the front bumper. Each radar sensor
has a 13-Hz capture frequency and up to 250-m range. The
proposed EOT algorithm is validated on annotated trajectories
of objects that are continuously covered by at least one radar
point for a certain time period.

A. Offline Measurement Model Training

To obtain the accumulated radar point cloud for vehicle
detections, we first extract the set of objects labeled as car1,
and then for each object we extract all the radar points within
its annotated 3D bounding box with a scaling ratio of 1.2.
This is to account for the spread of the measurements around
object edges. After the initial measurement extraction, (5) is
applied to transform the radar point cloud to a unit coordinate
system. To prevent the training data mainly consisting of data
points collected from dominating aspect angles (e.g., from the
rear), we utilized the annotation information to only consider
radar detections with “cross-moving” dynamic property2, “un-
ambiguous” radial velocity and probability being an artifact

1There are other vehicle types in the dataset like truck and bus, our learned
measurement model can be extended to cover different sizes of vehicles.

2This increases the proportion of radar detections that appear on the left
and right sides of the car.



(a) φ′ ∈ [−π/8, π/8) (b) φ′ ∈ [−π/8, π/8) (c) φ′ ∈ [5π/8, 7π/8) (d) φ′ ∈ [5π/8, 7π/8)

Fig. 3: Histograms of radar points cloud and pdfs of trained HTG model, conditioned on different aspect angle ranges.

due to multipath propagation less than 25%. This results in
a more balanced training dataset with 20743 radar points in
total as shown in Fig. 1 (a).

Similar to [19], a set of eight hierarchical truncation models
are trained based on a subset of radar points conditioned on the
aspect angle φ′ in the equally spaced intervals [−π, π] in the
unit coordinate system. To utilize the symmetry information
of vehicle detections, pseudo reflection points with respect to
the horizontal axis are added to the training data to enrich
the information. Subsets of radar points cloud conditioned on
different aspect angle ranges and their corresponding learned
HTG densities are shown are shown in Fig. 3.

B. Tracking Performance Evaluation on nuScenes Dataset

We compare the tracking performance between RM [13]
and the proposed method HTG-RM. The object is assumed
to move following a coordinated turn motion model with
standard deviations of polar and angular acceleration noise
σv = 1.5 and σω = 0.1, respectively. For RM, the standard
deviation of sensor noise is σr = 0.2. For HTG-RM, the
learned sensor noise covariance is applied and the number of
iterations used in the update step is set to 5. For both RM
and HTG-RM, the initial kinematic state is set to the same
as the first annotated object state and the initial extent state
is determined by the average size of all the annotated cars in
the nuScenes dataset.

To validate the performance of the proposed method, a
set of three courses representing common driving routes was
extracted from the nuScenes ground truth data. For each
course, the annotations at the keyframes and the ego vehicle
trajectory are shown in Fig. 4. In scenario 1, the object moves
following the ego vehicle on a nearly straight lane. In scenario
2, the object first moves on a straight lane behind and to the
left of the ego vehicle, and then it takes a right turn and moves
behind and to the right of the ego vehicle. In scenario 3, the
object moves in an S curve behind the ego vehicle.

To evaluate the object kinematic and extent states estima-
tion performance on annotated keyframes, we compute the
Gaussian Wasserstein Distance (GWD) metric [23] between
the ground truth ξ and the estimate ξ̂:

dGW(ξ− ξ̂) = ||h(x)−h(x̂)||2 +Tr(X+X̂−2(X
1
2 X̂X

1
2 )

1
2 ),

(16)
where the extent state X of the annotation bounding box with
length l and width w is given by diag(l2/4, w2/4). The GWDs
of RM and HTG-RM for the three different scenarios are

compared in Fig. 5. The results show that the proposed method
HTG-RM outperforms RM by a large margin except for a
few annotated keyframes. We found that such performance
degradation happens when the predicted state deviates from
the ground truth to a large extent. This means that the update
step of HTG-RM could be sensitive to initialization.

In addition, snap-shots of object state estimates of RM and
HTG-RM are illustrated in Fig. 6. It can be seen that the RM
estimates tend to fit the part of the object that is in sight of the
ego vehicle whereas HTG-RM does not present this behavior
in general and shows improved performance in terms of both
the kinematic state and the extent state.

VI. CONCLUSION

In this paper, we have presented a data-driven HTG mea-
surement model learned from real-world automotive radar
data. We have also developed a new RM update step tailored
to the learned measurement model. The effectiveness of
the proposed approach has been verified on data from the
nuScenes dataset.
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