-
EA0151: Internship - Physics-informed machine learning
MERL is looking for a self-motivated intern to work on physics-informed machine learning with application to electric machine condition monitoring and predictive maintenance. The ideal candidate would be a Ph.D. student in electrical engineering or computer science with solid research background in electric machines, signal processing, and machine learning. Proficiency in Python and Matlab is required. The intern is expected to collaborate with MERL researchers to build machine learning model for multi-modal data analysis, prepare technical reports, and draft manuscripts for scientific publications. The total duration is anticipated to be 3-6 months. The start date is flexible. This internship requires work that can only be done at MERL.
- Research Areas: Electric Systems, Machine Learning, Multi-Physical Modeling, Signal Processing
- Host: Dehong Liu
- Apply Now
-
EA0069: Internship - PWM inverter switching loss reduction
MERL is looking for a self-motivated intern to work on PWM inverter simulation and design. The ideal candidate would be a Ph.D. candidate in electrical engineering with solid research background in power electronics, control, and optimization. Experience in switching loss reduction modulation is desired. The intern is expected to collaborate with MERL researchers to carry out simulations, optimize design, analyze results, and prepare manuscripts for scientific publications. The total duration is 3 months.
Required Specific Experience
- Experience with simulation tools for PWM inverter design.
- Research Areas: Electric Systems, Signal Processing, Optimization
- Host: Dehong Liu
- Apply Now
-
EA0073: Internship - Fault Detection for Electric Machines
MERL is seeking a motivated and qualified individual to conduct research on electric machine fault analysis and detection methods. Ideal candidates should be Ph.D. students with a solid background and publication record in one more research area on electric machines: electric and magnetic modeling, machine design and prototyping, harmonic analysis, fault detection, and predictive maintenance. Knowledge on data analysis and machine learning algorithms, and strong programming skills using Python/PyTorch are expected. Research experience on modeling and analysis of electric machines and fault diagnosis is desired. Senior Ph.D. students in related expertise, such as electrical engineering, mechanical engineering, and applied physics are encouraged to apply. Start date for this internship is flexible and the duration is 3 months.
- Research Areas: Electric Systems, Machine Learning, Multi-Physical Modeling
- Host: Bingnan Wang
- Apply Now
-
EA0149: Internship - Electric Motor Design Optimization
MERL is seeking a motivated and qualified individual to conduct research on physics informed neural network-based modeling for electric motor design optimization. Ideal candidates should be Ph.D. students with solid background and proven publication record in one or more of the following research areas: 2D/3D electromagnetic modeling and simulation, analytical modeling methods for electromagnetics and iron losses (e.g. magnetic equivalent circuit), and machine learning-based surrogate modeling. Strong coding skill with ANSYS or open-source FEM software and Python-based learning library is a must and prior experience with running jobs over cluster is a plus. Start date for this internship is flexible and the duration is 3-6 months.
Required Specific Experience
- Experience with modeling and simulations for motor design
- Research Areas: Electric Systems, Multi-Physical Modeling, Optimization
- Host: Bingnan Wang
- Apply Now