TALK    GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning

Date released: July 14, 2020


  •  TALK    GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning
  • Date & Time:

    Tuesday, July 14, 2020; 11:00 AM

  • Abstract:

    Automatic transistor sizing is a challenging problem in circuit design due to the large design space, complex performance trade-offs, and fast technological advancements. Although there has been plenty of work on transistor sizing targeting on one circuit, limited research has been done on transferring the knowledge from one circuit to another to reduce the re-design overhead. In this work, we present GCN-RL Circuit Designer, leveraging reinforcement learning (RL) to transfer the knowledge between different technology nodes and topologies. Moreover, inspired by the simple fact that circuit is a graph, we learn on the circuit topology representation with graph convolutional neural networks (GCN). The GCN-RL agent extracts features of the topology graph whose vertices are transistors, edges are wires. Our learning-based optimization consistently achieves the highest Figures of Merit (FoM) on four different circuits compared with conventional black-box optimization methods (Bayesian Optimization, Evolutionary Algorithms), random search, and human expert designs. Experiments on transfer learning between five technology nodes and two circuit topologies demonstrate that RL with transfer learning can achieve much higher FoMs than methods without knowledge transfer. Our transferable optimization method makes transistor sizing and design porting more effective and efficient. The work is accepted to DAC 2020.

  • Speaker:

    Hanrui Wang
    MIT

    Hanrui Wang is a PhD student at MIT HAN Lab. His research interest is the intersection of computer architecture and efficient machine learning. He received his B.Eng. from Fudan University in 2018, and M.S. from MIT in 2020.

  • External Link:

    https://gcnrl.mit.edu

  • Research Areas:

    Electronic and Photonic Devices, Machine Learning