Computing 3D Geometry Directly from Range Images

    •  Frisken, S.F., Perry, R.N., "Computing 3D Geometry Directly from Range Images", ACM SIGGRAPH, August 2001.
      BibTeX TR2001-10 PDF
      • @inproceedings{Frisken2001aug1,
      • author = {Frisken, S.F. and Perry, R.N.},
      • title = {Computing 3D Geometry Directly from Range Images},
      • booktitle = {ACM SIGGRAPH},
      • year = 2001,
      • month = aug,
      • url = {}
      • }
  • MERL Contact:
  • Research Area:

    Computer Vision


Several techniques have been developed in research and industry for computing 3D geometry from sets of aligned range images. Recent work has shown that volumetric methods are robust to scanner noise and alignment uncertainty and provide good quality, water-tight models. However, these methods suffer from limited resolution, large memory requirements and long processing times, and they produce excessively large triangle models. In this report, we propose a new volumetric method for computing geometry from range data that: 1) computes distances directly from range images rather than from range surfaces, 2) generates an Adaptively Sampled Distance Field (ADF) rather than a distance volume or a 3-color octree, resulting in a significant savings in memory and distance computations, 3) provides an intuitive interface for manually correcting the generated ADF, and 4) generates optimal triangle models (with fewer triangles in flat regions and more triangles where needed to represent surface detail) from the generated ADF octree using a fast new triangulation method.


  • Related News & Events

    •  NEWS   ACM SIGGRAPH 2001: 7 publications by Hanspeter Pfister, Ron Perry and Jeroen van Baar
      Date: August 12, 2001
      Where: ACM SIGGRAPH
      MERL Contacts: Ronald Perry; Jeroen van Baar
      • The papers "Computing 3D Geometry Directly from Range Images" by Frisken, S.F. and Perry, R.N., "A New Method for Numerical Constrained Optimization" by Perry, R.N., "Dynamic Meshing Using Adaptively Sampled Distance Fields" by Pope, J., Frisken, S.F. and Perry, R.N., "Shadermaps: A Method for Accelerating Procedural Shading" by Jones, T.R., Perry, R.N. and Callahan, M., "A Computationally Efficient Framework for Modeling Soft Body Impact" by Frisken, S.F. and Perry, R.N., "Kizamu: A System for Sculpting Digital Characters" by Perry, R.N. and Frisken, S.F. and "Surface Splatting" by Zwicker, M., Pfister, H., van Baar, J. and Gross, M. were presented at ACM SIGGRAPH.