TALK  |  Emotion Detection for Health Related Issues

Date released: Mar 10, 2016


  •  TALK   Emotion Detection for Health Related Issues
  • Date & Time:

    Tuesday, February 16, 2016; 12:00 PM - 1:00 PM

  • Abstract:

    Recently, there has been a great increase of interest in the field of emotion recognition based on different human modalities, such as speech, heart rate etc. Emotion recognition systems can be very useful in several areas, such as medical and telecommunications. In the medical field, identifying the emotions can be an important tool for detecting and monitoring patients with mental health disorder. In addition, the identification of the emotional state from voice provides opportunities for the development of automated dialogue system capable of producing reports to the physician based on frequent phone communication between the system and the patients. In this talk, we will describe a health related application of using emotion recognition system based on human voices in order to detect and monitor the emotion state of people.

  • Speaker:

    Dr. Najim Dehak
    MIT

    Najim Dehak received his Engineering degree in Artificial Intelligence in 2003 from Universite des Sciences et de la Technologie d'Oran, Algeria, and his MS degree in Pattern Recognition and Artificial Intelligence Applications in 2004 from the Universite de Pierre et Marie Curie, Paris, France. He obtained his Ph.D. degree from Ecole de Technologie Superieure (ETS), Montreal in 2009. During his Ph.D. studies he was also with Centre de recherche informatique de Montreal (CRIM), Canada. In the summer of 2008, he participated in the Johns Hopkins University, Center for Language and Speech Processing, Summer Workshop. During that time, he proposed a new system for speaker verification that uses factor analysis to extract speaker-specific features, thus paving the way for the development of the i-vector framework. Dr. Dehak is currently a research scientist at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). His research interests are in machine learning approaches applied to speech processing and speaker modeling. The current focus of his research involves extending the concept of an i-vector representation into other audio classification problems, such as speaker diarization, language- and emotion-recognition.

  • Research Areas:

    Multimedia, Speech & Audio