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This report details the derivations for the paper by Wisdom, Hershey, Le Roux, and Watanabe [1]. Section 1 gives a practical review of
complex gradients and Wirtinger caluclus, and section 2 details the gradient derivations for the deep MCGMM.

1. COMPLEX GRADIENTS AND WIRTINGER CALCULUS

Given a complex-valued function f of complex-valued data x = u + iv, what is the gradient ∇xf? What is the chain rule if x is a function
of an intermediate variable t? This section describes the complex gradient in practice.

Common practice is to use a “composite-real” representation of complex quantities where every complex number is transformed into a
two-dimensional real-valued vector:

z :=

[
u
v

]
. (1)

However, taking the gradient of such a representation can lead to incorrect quantities in some situations [2]. Other times, algebra using the
real and imaginary parts directly can be arduous, especially for functions that have a lot of interactions between the real and imaginary parts.

An alternative (and equivalent) representation is “augmented-complex” that represents x as a two-dimensional complex vector:

x :=

[
x
x∗

]
, (2)

and considers x and x∗ to be separate, independent variables.
We will see that the composite-real and augmented-complex representations are useful in different contexts.

1.1. Real-imaginary gradients

The general case for f(z(t)) ∈ R, with z = x+ iy and t = r + is:
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We will now list some special cases that are useful identities.
Case 1: real f , real z, complex t
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(
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δs

)
(6)

Case 2: real f , complex z, real t

∇tf =
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� δx

δr
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δr
(7)

Case 3: real f , complex z, complex t, z(t) a holomorphic function of t
Because of the Cauchy-Riemann conditions,

δx
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δs
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=− δy
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,

(8)



then
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and
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1.2. Wirtinger calculus

Real-imaginary gradients are completely sufficient for taking derivatives of complex data. However, for some functions, especially nonholo-
morphic functions of complex data, the real and imaginary parts can be tedious to derive algebraically. To tackle such derivatives, Wirtinger
calculus (also called CR-calculus because of the frequent conversions between complex and real domains) becomes useful.

The Wirtinger derivatives treat z and z∗ as separate, independent variables. These derivatives are defined as

δ

δz
:=

1

2

(
δ

δx
− i

δ

δy

)
(11)

δ

δz∗
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1

2

(
δ

δx
+ i

δ

δy

)
(12)

If f is a holomorphic function (i.e., is only a function of z and not of z∗), then δf
δz∗ = 0. If f is an arbitrary (potentially nonholomorphic)

complex function of z, the conjugate Wirtinger derivative satisfies the identity

δf

δz∗
=

(
δf∗

δz

)∗
. (13)

If f is a scalar real-valued function of z, we have the identity

δf

δz∗
=

(
δf

δz

)∗
, (14)

The general case for f(z(t)) ∈ R, with z = x+ iy and t = r + is is

∇tf =
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δz
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. (15)

Using the identity (13), we have
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. (16)

Using the identity (14), we have

∇tf =
δf

δz

δz

δt
+

(
δf

δz

)∗(
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. (17)

Thus, for this case, we can see one of the advantages of Wirtinger calculus versus real-imaginary composite gradients: here, only three
derivatives, δf

δz
, δz
δt

, and δz
δt∗ , are required, instead of the four required by the real-imaginary composite gradient chain rule (5).

1.2.1. Gradient checking

Using (11), we can check the derivatives δf
δx

and δf
δx∗ by the following procedure, where ε is chosen to be a small constant, usually on the

order of 10−6:

x(+r) =x+ ε

x(−r) =x− ε

x(+i) =x+ iε

x(−i) =x− iε
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2. GRADIENTS FOR THE DEEP MCGMM

The gradients for backpropagation are as follows. All gradients are Wirtinger gradients, as described in [2], and thus use the Wirtinger chain
rule. In the following, the operators + and � indicate “broadcasted” addition, and marginalizing multiplication, respectively. For example,
broadcasted addition of two tensors of size N × 1× P and 1×M × P results in a tensor of size N ×M × P , where any dimensions of 1
are “broadcasted” over the dimension of the other tensor.

Marginalizing multiplication � for Wirtinger gradients is defined as follows. If δy/δx is a gradient of a Ny ×My × Py tensor y with
respect to a Nx ×Mx × Px tensor x, and if δx/δt is a gradient of x with respect to a Nt ×Mt × Pt tensor t, then we will denote δy/δx as
having size Ny×My×Py

Nx×Mx×Px
and δx/δt as having size Nx×Mx×Px

Nt×Mt×Pt
. Then marginalizing multiplication between the two Wirtinger gradients is

δy

δt
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δx
� δx

δt
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.
(18)

In terms of implementation for the multichannel GMM, variables and gradients are stored as tensors that all have the same maximum size,
I × J × Z × F × T . If a particular gradient does not have a particular dimension, then that dimension is simply set to 1. For example, the
I×J×F channel modelBf is stored as a tensor of size I×J×1×F ×1. In rare cases when more dimensions are needed (for example, the
sample spatial covariance Σ̂xxf which is J × J ×F ), the unused dimensions can be used. For example, Σ̂xxf is stored as a J × J × 1×F × 1
tensor.

We will now describe the gradients involved in backpropagation. For reference, [1, figure 2] is helpful. To find all computational paths,
start at the cost function D and follow arrows in the opposite direction.

2.1. Last layer (K)

In the last layer, the following paths exist to λ(K) ≡ log γ(K):

D ← X̂(K) ← µ̄(K) ← γ̄(K) ← λ(K)

↖ π̄(K) ← L(K) ↙

↖ π̄(K) ← L(K) ← µ̄(K) ← γ̄(K) ↙

↖ π̄(K) ← L(K) ← γ̄(K) ↙ ,

(19)

and the paths to A(K) and b(K) are
D ← X̂(K) ← π̄(K) ← L(K) ← A(K), b(K) (20)

These paths require the following gradients:
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δγ̄
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f

δλ
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where softmax′(·) is the derivative of the softmax function.

2.2. Lower layers (k < K)

To proceed downward through the network from layer k to layer k − 1, there are two main “choke-points”: µ̄(k) and B(k). The path to µ̄(k)

is
D... ← X̂(k) ← µ̄(k)

← L(k) ↙ .
(33)

On the way to B(k), paths through γ̄(k) are required:

D... ← µ̄(k) ← γ̄(k)

← L(k) ↙
(34)

Finally, the paths to B(k) are
D... ← µ̄(k) ← B(k)

← γ̄(k) ↙
(35)

with Wirtinger gradients
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Continuing downward, we go through X̂(k−1):

D... ← µ̄(k) ← X̂(k−1)

← B(k) ↙
(39)

The top path uses gradient
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=
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The bottom path is a good example of a Wirtinger gradient chain rule, and is given by
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�
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+
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Next we proceed to π̄(k−1):
D... ← X̂(k−1) ← π̄(k−1)

← B(k) ↙
(42)

with
δB

(k)
f

δπ̄
j,z,(k−1)
t
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1
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The gradient from π̄(k−1) to L(k−1) is, as before, the derivative of the sigmoid function. Now we proceed to µ̄(k−1):

D... ← X̂(k−1) ← µ̄(k−1)

← L(k−1) ↙

← B(k) ↙

(44)

with
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f
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=
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As a last step, we proceed to B(k−1), which requires intermediate paths through γ̄(k−1):

D... ← µ̄(k−1) ← γ̄(k−1)

← L(k−1) ↙

← B(k) ↙

(46)

with

δB
(k)
f

δγ̄
j,z,(k−1)
f

= −
∑
t

Σ̂
Y X̂(k)
f

[
Σ̂X̂X̂(k)

]−2

− π̄
j,z,(k−1)
t(

γ̄
j,z,(k−1)
f

)2
 . (47)

Finally, we reach B(k−1), which concludes the required gradients down through layer k − 1.

D... ← µ̄(k−1) ← B(k−1)

← γ̄(k−1) ↙ .
(48)

The gradients with respect to the trainable parameters λ(k−1), A(k−1), and bk−1 are the same as in layer K, and use gradients (29), (30),
(31), and (32).
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