Optimization

Efficient solutions to large-scale problems.

Much of MERL's research activity involves formulating scientific and engineering problems as optimizations, which can be solved in an efficient way. We have developed fundamental algorithms to better solve classic problems, such as quadratic programs and minimum-cost paths. Our work also involves developing theoretical bounds to understand performance limits.

  • Researchers

  • News & Events

    •  TALK   Advances in Accelerated Computing
      Date & Time: Friday, February 2, 2018; 12:00
      Speaker: Dr. David Kaeli, Northeastern University
      MERL Host: Abraham Goldsmith
      Research Areas: Control, Optimization, Machine Learning, Speech & Audio
      Brief
      • GPU computing is alive and well! The GPU has allowed researchers to overcome a number of computational barriers in important problem domains. But still, there remain challenges to use a GPU to target more general purpose applications. GPUs achieve impressive speedups when compared to CPUs, since GPUs have a large number of compute cores and high memory bandwidth. Recent GPU performance is approaching 10 teraflops of single precision performance on a single device. In this talk we will discuss current trends with GPUs, including some advanced features that allow them exploit multi-context grains of parallelism. Further, we consider how GPUs can be treated as cloud-based resources, enabling a GPU-enabled server to deliver HPC cloud services by leveraging virtualization and collaborative filtering. Finally, we argue for for new heterogeneous workloads and discuss the role of the Heterogeneous Systems Architecture (HSA), a standard that further supports integration of the CPU and GPU into a common framework. We present a new class of benchmarks specifically tailored to evaluate the benefits of features supported in the new HSA programming model.
    •  
    •  NEWS   MERL invites applications for Visiting Faculty
      Date: February 15, 2018
      Brief
      • University faculty members are invited to spend part or all of their sabbaticals at MERL, pursuing projects of their own choosing in collaboration with MERL researchers.

        To apply, a candidate should identify and contact one or more MERL researchers with whom they would like to collaborate. The applicant and a MERL researcher will jointly prepare a proposal that the researcher will champion internally. Please visit the visiting faculty web page for further details: http://www.merl.com/employment/visiting-faculty.php.

        The application deadline for positions starting in Summer/Fall 2018 is February 15, 2018.
    •  

    See All News & Events for Optimization
  • Internships

    • CD1300: Compiler Optimizations for Linear Algebra Kernels

      MERL is looking for a highly motivated individual to work on automatic, compiler based techniques for optimizing linear algebra kernels. The ideal candidate is a Ph.D. student in computer science with extensive experience in compiler design and source code optimization techniques. In particular, the successful candidate will have a strong working knowledge of polyhedral optimization techniques, the LLVM compiler, and Polly. Strong C/C++ skills and knowledge of LLVM at the source level are required. Publication of results in conference proceedings and journals is expected. The expected duration of the internship is 3 months and the start date is flexible.

    • CD1399: Optimization Algorithms for Stochastic Predictive Control

      MERL is looking for a highly motivated individual to work on tailored numerical optimization algorithms and applications of stochastic learning-based model predictive control (MPC) methods. The research will involve the study and development of novel optimization techniques and/or the implementation and validation of algorithms for industrial applications, e.g., related to autonomous driving. The ideal candidate should have experience in either one or multiple of the following topics: stochastic MPC (e.g., scenario trees or tube MPC), convex and non-convex optimization, machine learning, numerical optimization and (inverse) optimal control. PhD students in engineering or mathematics with a focus on stochastic (learning-based) MPC or numerical optimization are encouraged to apply. Publication of relevant results in conference proceedings and journals is expected. Capability of implementing the designs and algorithms in Matlab is expected; coding parts of the algorithms in C/C++ is a plus. The expected duration of the internship is 3-6 months and the start date is flexible.

    • MP1406: Numerical Analysis of Electric Machines

      MERL is seeking a motivated and qualified intern to conduct research in the design, modeling and optimization of electrical machines. The ideal candidate should have solid backgrounds in electromagnetic theory, electric machine design, and numerical modeling techniques (including model reduction), research experiences in electric, magnetic, and thermal modeling and analysis of electrical machines, and demonstrated capability to publish results in leading conferences/journals. Experience with ANSYS, COMSOL, and optimization techniques is a strong plus. Senior Ph.D. students in electrical or mechanical engineering with related expertise are encouraged to apply. Start date for this internship is flexible and the duration is 3-6 months.


    See All Internships for Optimization
  • Videos

  • Free Downloads