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• R. Schwartz et al., “Green AI” 2020. 
– Training compute has increased exponentially: 10-fold annually.

• Strubell et al. “Energy and policy considerations for deep learning in NLP” 2019.
– Training a single NLP model requires 5-fold higher carbon emission of single car lifetime.

Social Challenge: Red AI
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The computation used to train deep learning models has 
increased 300,000x in six years: nearly 10x annually

Language model increases exponentially over years
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• High demand in electric power at data center driven by AI explosion, increasing bill
– Electricity capacity prices jumped 833% in one regional auction

– Some households saw $27/month increases

– All traced directly to data center electricity demand

Power Demand by AI Explosion
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• Data efficiency: 
– Data distillation

– Dimension reduction

– Curriculum learning 

• Training efficiency: 
– Few-shot learning

– Parameter-efficient fine-tuning (PEFT)

• Model efficiency: 
– Quantization

– Pruning

– Decomposition

Green AI Technologies
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Decomposition
Pruning

Quantization

Green AI
Efficient Model
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LatentLLM
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• We developed a solution to globally compress multi-head attention (MHA) into 
multi-head latent attention (MLA)

• MLA was introduced in DeepSeek-V3 to improve efficiency: KV cache

• How to convert any LLMs into DeepSeek-like LLMs efficiently?
– 1) Preconditioner; 2) Junction; 3) Joint tensor decomposition

MLA in DeepSeek-V3

QKV Low-Dimensional Projection

Q: 7168 → 1536
KV: 7168 → 512
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• How to compress pre-trained LLMs without fine-tuning?

• Adaptive SVD (ASVD) [Yuan24] compresses weights in a locally optimal manner
– Activation statistics is compensated by preconditioning matrix

– Calibration tokens are used to compute activation statistics (similar to AWQ/GPTQ)

1. Activation-Aware Rank Reduction
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• Various preconditioners are introduced for model pruning, quantization, etc.
– Original ASVD used diagonal L1-norm 

– We theoretically derived that root-covariance is optimal

Preconditioner
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• There is no unique decomposition to minimize the error
– Any arbitrary full-rank junction matrix has no impact in performance

– There are infinite choices to map SVD towards B and A

2. Junction Matrix
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General solution:

Junction

Total FLOPs/memory can be reduced
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• SVD with block-identity junction can reduce the total number of parameters
– SVD without junction can exceed the original parameter counts

Junction Matrix Impact
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• We propose to compress multiple weights jointly
– Joint QK compression

– Joint VO compression

– Joint UD compression

3. Attention-Aware Joint Rank Reduction
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• Attention map error minimization:

Joint QK Compression: High-Order Tensor Decomposition
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Solution: 
HO-SVD
(Tucker Decomposition)

Joint VO compression has similar solution
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• We use decoupled loss minimization trick, similar to SparseLLM

Joint UD Compression: Decoupled Loss Minimization
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Alternating optimization of auxiliary values Z/Z’ and weight rank reduction
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• FLOPs/MACs can decrease almost linearly

• Throughput improves almost quadratically

• KV cache reduces significantly

Experiments: Complexity/Memory/Throughput Analysis
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LLM model: OPT-6.7B. 4-batch, 1024 tokens, torch.compile(“max-autotune”) on NVIDIA A40 GPU
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• Wikitext-2 perplexity over LLM model sizes and variants

Experiments: LLM Benchmark

1/24/26: T. Koike-Akino et al., LatentLLM: Activation-Aware Transform to Multi-Head Latent Attention 15

OPT-125M

OPT-1.3B
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• LLaVA-7B model for visual reasoning benchmark: ScienceQA

Experiments: VLM Benchmark (ScienceQA)
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QA for Natural, Social, & Language Science
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• LLaVA-7B/Qwen2.5-VL-7B/3B models for visual reasoning benchmark: TextVQA

Experiments: VLM Benchmark (TextVQA)
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LatentLLM: 
Best performance consistently

ASVD without RootCov: 
Nearly 0% Acc
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Summary
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• We introduced a new compression method LatentLLM for green AI
– We discussed various preconditioning matrices, validating the optimality of root-covariance

– We proposed to use junction matrix, improving the efficiency with block identity form 

– We derived a mathematically optimal joint tensor decomposition method, minimizing 
attention loss

– LatentLLM can convert MHA to MLA like DeepSeek, without the need of re-training

– We showed significant KV cache reduction and throughput improvement

– We validated the superiority of LatentLLM over state-of-the-art rank reduction methods for 
various LLM/VLM models and benchmarks

• We plan:
– to integrate pruning and quantization

– to incorporate with fine-tuning

– to apply to edge AI platforms

• Please contact us (koike@merl.com) for more discussions

mailto:koike@merl.com
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