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Problem Description

Original printed part Damaged part

Objectives:
• Estimate damage using observations from a vision sensor (a depth camera)
• Design tool path geometry to deposit metal to cure the damage while avoiding 

collisions 

Assumptions:
• We do not access to a CAD model of the damaged part 
• We do have access to the CAD model of the original part
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𝐺 – set of points in the 
“good part” point-cloud

𝑅 – set of points in the 
“repair part” point-cloud

𝐺 − R = 𝑝 𝑝 ∈ 𝐺, ∉ 𝑅}

The points on the exposed surfaces of 
the damage are in 𝐺 − R

R − 𝐺 = 𝑝 𝑝 ∈ 𝑅, ∉ 𝐺}

The points on the hidden surfaces of the 
damage are in R − 𝐺

Problem Description
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DamageEst

• Our goal is to find a valid, watertight mesh that fully encloses the damage volume and doesn't 
enclose the undamaged region.

• To do so, first reconstruct the inner damage surface and find its boundary.

• Next, "push" this boundary to the background mesh (which will enclose everything).

• "Split" the background mesh into two components along the "pushed" boundary.

• Finally, attach the reconstructed surface to a component of the "split" mesh to get an 
enclosing surface.
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DamageEst

Assumptions

1. We have the original STL file and a point cloud generated from that STL.  *

2. The damage volume is connected. (If it is not connected, we can repeat this 
method for each damage site).

3. The damage volume contains part of the surface of the original STL.

* The good STL point cloud intentionally includes high density sampling on every edge and explicitly contains every 
vertex in the STL. This leads to better alignment of clouds in the preprocessing steps.
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Aside on DBSCAN

In order to remove noise from the point cloud and to detect damage 
sites, we apply DBSCAN 

To clean the scanned point cloud up, we use DBSCAN* (Density 
Based Spatial Clustering Of Applications with Noise).   DBSCAN 
yields the cluster identifier of each cluster in the input (plus a 
“cluster” of noise points that don’t belong to any cluster). 
DBSCAN doesn’t need to know the number of clusters in 
advance.

To illustrate the algorithm, consider the cloud of points on the 
right:

(*)“DBSCAN” has nothing to do with databases, and doesn’t do 
anything like scanning.  Near as we can figure it, it’s just a cool 
acronym.  It’s also quite durable, having first been used in 1996.
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Aside on DBSCAN

First, we create a ball of radius 𝜖 around each point in the cloud.
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Aside on DBSCAN

Next, we create the graph where each point is joined to its 𝜖-
neighbors.
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Aside on DBSCAN

Each node with a degree greater than 𝑘 is a core vertex. Each 
component containing a core vertex is a cluster.
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Aside on DBSCAN

DBSCAN can filter noise and can find non-linear clusters!

Clusters from DBSCAN Created Clusters
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DamageEst

Undamaged Part – a 
noiseless, watertight, 
triangulated, damage 
free CAD model.

Damaged Part Scan -  a noisy, 
porous, real-world mess of a 
point cloud.
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DamageEst

Preprocessing

1. Align the point cloud scan with the original part’s STL (We need to 
be working in the same coordinate system when comparing parts).

2. Find the points in the damage scan that are far from the surface of 
the original part.

3. Cluster these points using DBSCAN to remove noise and to get each 
individual damage site. We can then apply DamageEst to each 
damage site.
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Our plan of Action:

2. Reconstruct Inner Damage Surface via PyVista’s 
“reconstruct_surface” library 

(Pyvista: reconstruct_surface)

Original STL

Scanned Point Cloud of 
Inner Damage Surface

Point cloud

Reconstructed surface

1. Get Inner Damage Surface Points via Hausdorff 
Distance from the known good STL-derived 
point cloud 

https://docs.pyvista.org/api/core/_autosummary/pyvista.polydatafilters.reconstruct_surface
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DamageEst

3. Find Surface Boundary

Boundary Vertices

• We find the boundary of the surface by finding which edges in 
the mesh are bound only one triangle. 

• The vertices contained in these boundary edges will eventually 
be "pushed" to the background mesh.

Boundary Edges Boundary Vertices

Interior
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4. Create Background Mesh

• The background mesh should enclose the mesh from 
the original STL and the reconstructed surface. This is 
to ensure there is no self-intersection.

• This background mesh is where the "pushout" and 
"split" will ultimately occur.

• Think of the background mesh as a “neutral ground” 
that both the original (precise) CAD model generated 
cloud and the (noisy) scanned damaged-part cloud 
can be pushed onto, and then navigated easily on an 
equal (and relatively fine grained) basis.

Background Mesh

Original STL

Reconstructed Surface

Damaged Volume
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DamageEst

5. Push Boundary Vertices

• Map each of the boundary 
vertices to the closest vertex in 
the background mesh. 

• This is the "pushout" step. 

Boundary Vertices
Pushed Vertices
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DamageEst

6. Connect Pushed Vertices
• Now, we connect the pushed vertices 

to get a cycle. To achieve this, we take 
two adjacent background vertices and 
connect their "pushouts" by finding the 
shortest path between them on the 
background mesh.

• This connected cycle is where we "split" 
the background mesh.

Connecting Vertices
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DamageEst

7. Split Background Mesh

• When we split the background mesh, one 
component will correspond to the damaged 
volume and the other will correspond to 
the undamaged volume. 

• The component corresponding to the 
damaged volume is shown with the 
reconstructed surface.

Background Mesh Component

Reconstructed Surface
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DamageEst

8. Connect Surfaces

• Now we connect the component of the 
background mesh and the reconstructed 
surface to get the damaged mesh. To do so, 
we create an edge between each boundary 
vertex and it's corresponding "pushed" 
vertex. Then we fill in the triangles using 
pymeshfix.

• The damaged mesh will enclose the 
damage volume.

https://pymeshfix.pyvista.org/
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DamageEst

Boolean Operations

𝐴 𝐵

𝐴 ∩ 𝐵 𝐴 ∪ 𝐵

𝐴 − 𝐵 𝐵 − 𝐴
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DamageEst

9. Take Boolean Intersection (Find Overlapping Volume)
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DamageEst

Result

View down the edge of the 
damaged volume

These are the same line
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But, does it actually work?

Undamaged Parts

Damaged Part Scan

(hint to self – pass around samples now)
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DamageEst

1. Get Inner Damage Surface Points
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DamageEst

2.   Reconstruct Inner Damage Surface
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DamageEst

3.   Find the Boundary of the Damage Surface
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DamageEst

4.   Create the Background Mesh
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DamageEst

5.   Push Boundary to the Background Mesh
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DamageEst

6.   Connect Pushed Cycle
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DamageEst

7.   Split the Background Mesh
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DamageEst

8.   Connect to the Damage Surface
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DamageEst

9.   Take Boolean Intersection (find overlapping volume)
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DamageEst

Results
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Pushout/Split Method

Results
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Pushout/Split Method

Results
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Comparison to State of the Art (Method 1, “Li et al”)

• Li’s method compares a point cloud scan of 
a damaged part to an undamaged part.

• Li’s method takes far longer to run then 
ours.

• Li’s method is iterative, ours isn't.

Comparison of Methods

Algorithm Part Number of Points Number of 
Iterations

Runtime (s)

Damage Est Torus 50,000 1 12

Damage Est Dragon 100,000 1 7

Standard ICP Model P 30,000 54 2415

Modified ICP Model P 30,000 30 1713
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Comparison to State of the Art (Method 1, “Li et al”)

• Li’s method assumes that only "small" 
damage depths can be repaired due to 
the maximum depth of damage 
constraint.

• Our method can estimate large missing 
components without considering a 
maximum depth constraint.

• Li’s method detects additive and 
subtractive estimates at the same step. 
Ours considers these estimates 
separately.
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Comparison to State of the Art (Method 1 “Li et al”)

• Li’s method classifies the vertices as 
defective, maps any undamaged vertices to 
the nearest undamaged vertex in the original 
part, then attempts to recreate the entire 
surface of both the damaged and 
undamaged clouds. Finally, they take the 
Boolean operations.

• We use the background mesh to help 
counter noise and inaccuracies in the point 
cloud scans. In addition, this helps with 
inaccuracies in the reconstruction process.
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Comparison to State of the Art (Method 2, “Perini et al”)

• Perini’s method uses an octree to estimate 
the damage volumes. They estimate the 
damage volume and original part as cubic 
blocks.

• We only consider the surfaces of the 
damaged part and the original part.
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Comparison to State of the Art (Method 2, Perini et al)

• For less precise estimates, Perini’s method 
works well. As precision increases, the 
computation scales exponentially (note the 
first plot is logarithmic).

• This scaling limits the precision for larger 
parts if the runtime is to be kept reasonable. 
This is true even for simpler meshes.

• The plots on the right are only for building 
the octree. Their implementation of the 
Boolean difference is also an exponential 
algorithm. (But the paper claims their 
implementation only takes a few seconds to 
run in practice)
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Comparison to State of the Art (Method 2, Perini et al)

• Our method has the maximum 
allowable precision (up to the point cloud 
scan's resolution and the float precision).

• Our entire pipeline works on meshes with 
similar complexity to their meshes, but 
without the runtime required for their 
method at high precision.

• Our bottleneck comes from the number of 
intersections of the background mesh and 
original STL, rather than the number of 
triangles.
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Comparison to Method 2 (Gear)

Comparison of Methods on Gear Damage Estimation

Method Runtime (averaged over 10 runs)

Ours (“Damage Est”) 2.9 s

Voxel (Depth 7) 10.4 s

Voxel (Depth 9) 18.2 s

Voxel (Depth 11) 149.1 s

Gear

Damaged Point Cloud Scan
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Comparison to Method 2 (Gear)
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Comparison to Method 2 (Gear)

Damage Est Voxel (Depth 7)

Voxel (Depth 9) Voxel (Depth 11)
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Comparison to Method 2 (Gear)

• For the voxel method, it is necessary to set a 
threshold when determining if a voxel is 
contained in the damage volume. High 
thresholds lead to underestimation, low 
thresholds lead to artifacts on sharp corners 
of the original STL. These may require post 
processing.

• DamageEst leads to very few artifacts and 
preserves sharp features in the original STL.

Damage Est

Voxel (Depth 11, High Threshold) Voxel (Depth 11, Low Threshold)
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Comparison to Method 2 (Perini et al fixing the Torus)

• We compared the runtimes DamageEst to 
the voxel method for a second (Torus) part. 
This is the same torus part we showed in our 
previous presentation.

• The runtimes are about the same at 9 
iterations of the voxel method.

• Even with more complicated parts (involving 
more complicated Boolean operations), 
DamageEst gives high quality reconstructions 
without exponential scaling.
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• The existing best method (Perini et al) uses voxels to estimate the 
damaged and undamaged regions of the part.

• This method is exponential in both memory and time, but yields 
accurate estimates in reasonable runtimes for small parts.

• Even with adaptive octree, curved surfaces and boundaries can increase 
runtimes in practice.

• With larger octree depths, the estimate becomes more accurate.

Existing Best Method

Perini 2020, Figure 8, Diagram, Rapid 
Prototyping Journal, Vol 26, Number 5, pg 
930 
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Thank you I!

Questions ?

Discussion ?
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