
© MERL

http://www.merl.com

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL)
Cambridge, Massachusetts, USA

http://www.merl.com

DamageEst: Accurate Estimation of Damage for Repair
using Additive Manufacturing

CONFIDENTIAL

Patrick Gambill*, Devesh K. Jha, Bala Krishnamoorthy*, Arvind Raghunathan

and William Yerazunis

*Washington State University

http://www.merl.com/

© MERL

Problem Description

Original printed part Damaged part

Objectives:
• Estimate damage using observations from a vision sensor (a depth camera)
• Design tool path geometry to deposit metal to cure the damage while avoiding

collisions

Assumptions:
• We do not access to a CAD model of the damaged part
• We do have access to the CAD model of the original part

© MERL

Dec 20183

𝐺 – set of points in the
“good part” point-cloud

𝑅 – set of points in the
“repair part” point-cloud

𝐺 − R = 𝑝 𝑝 ∈ 𝐺, ∉ 𝑅}

The points on the exposed surfaces of
the damage are in 𝐺 − R

R − 𝐺 = 𝑝 𝑝 ∈ 𝑅, ∉ 𝐺}

The points on the hidden surfaces of the
damage are in R − 𝐺

Problem Description

© MERL

DamageEst

• Our goal is to find a valid, watertight mesh that fully encloses the damage volume and doesn't
enclose the undamaged region.

• To do so, first reconstruct the inner damage surface and find its boundary.

• Next, "push" this boundary to the background mesh (which will enclose everything).

• "Split" the background mesh into two components along the "pushed" boundary.

• Finally, attach the reconstructed surface to a component of the "split" mesh to get an
enclosing surface.

© MERL

DamageEst

Assumptions

1. We have the original STL file and a point cloud generated from that STL. *

2. The damage volume is connected. (If it is not connected, we can repeat this
method for each damage site).

3. The damage volume contains part of the surface of the original STL.

* The good STL point cloud intentionally includes high density sampling on every edge and explicitly contains every
vertex in the STL. This leads to better alignment of clouds in the preprocessing steps.

© MERL

Aside on DBSCAN

In order to remove noise from the point cloud and to detect damage
sites, we apply DBSCAN

To clean the scanned point cloud up, we use DBSCAN* (Density
Based Spatial Clustering Of Applications with Noise). DBSCAN
yields the cluster identifier of each cluster in the input (plus a
“cluster” of noise points that don’t belong to any cluster).
DBSCAN doesn’t need to know the number of clusters in
advance.

To illustrate the algorithm, consider the cloud of points on the
right:

(*)“DBSCAN” has nothing to do with databases, and doesn’t do
anything like scanning. Near as we can figure it, it’s just a cool
acronym. It’s also quite durable, having first been used in 1996.

© MERL

Aside on DBSCAN

First, we create a ball of radius 𝜖 around each point in the cloud.

© MERL

Aside on DBSCAN

Next, we create the graph where each point is joined to its 𝜖-
neighbors.

© MERL

Aside on DBSCAN

Each node with a degree greater than 𝑘 is a core vertex. Each
component containing a core vertex is a cluster.

© MERL

Aside on DBSCAN

DBSCAN can filter noise and can find non-linear clusters!

Clusters from DBSCAN Created Clusters

© MERL

DamageEst

Undamaged Part – a
noiseless, watertight,
triangulated, damage
free CAD model.

Damaged Part Scan - a noisy,
porous, real-world mess of a
point cloud.

© MERL

DamageEst

Preprocessing

1. Align the point cloud scan with the original part’s STL (We need to
be working in the same coordinate system when comparing parts).

2. Find the points in the damage scan that are far from the surface of
the original part.

3. Cluster these points using DBSCAN to remove noise and to get each
individual damage site. We can then apply DamageEst to each
damage site.

© MERL

Our plan of Action:

2. Reconstruct Inner Damage Surface via PyVista’s
“reconstruct_surface” library

(Pyvista: reconstruct_surface)

Original STL

Scanned Point Cloud of
Inner Damage Surface

Point cloud

Reconstructed surface

1. Get Inner Damage Surface Points via Hausdorff
Distance from the known good STL-derived
point cloud

https://docs.pyvista.org/api/core/_autosummary/pyvista.polydatafilters.reconstruct_surface

© MERL

DamageEst

3. Find Surface Boundary

Boundary Vertices

• We find the boundary of the surface by finding which edges in
the mesh are bound only one triangle.

• The vertices contained in these boundary edges will eventually
be "pushed" to the background mesh.

Boundary Edges Boundary Vertices

Interior

© MERL

4. Create Background Mesh

• The background mesh should enclose the mesh from
the original STL and the reconstructed surface. This is
to ensure there is no self-intersection.

• This background mesh is where the "pushout" and
"split" will ultimately occur.

• Think of the background mesh as a “neutral ground”
that both the original (precise) CAD model generated
cloud and the (noisy) scanned damaged-part cloud
can be pushed onto, and then navigated easily on an
equal (and relatively fine grained) basis.

Background Mesh

Original STL

Reconstructed Surface

Damaged Volume

© MERL

DamageEst

5. Push Boundary Vertices

• Map each of the boundary
vertices to the closest vertex in
the background mesh.

• This is the "pushout" step.

Boundary Vertices
Pushed Vertices

© MERL

DamageEst

6. Connect Pushed Vertices
• Now, we connect the pushed vertices

to get a cycle. To achieve this, we take
two adjacent background vertices and
connect their "pushouts" by finding the
shortest path between them on the
background mesh.

• This connected cycle is where we "split"
the background mesh.

Connecting Vertices

© MERL

DamageEst

7. Split Background Mesh

• When we split the background mesh, one
component will correspond to the damaged
volume and the other will correspond to
the undamaged volume.

• The component corresponding to the
damaged volume is shown with the
reconstructed surface.

Background Mesh Component

Reconstructed Surface

© MERL

DamageEst

8. Connect Surfaces

• Now we connect the component of the
background mesh and the reconstructed
surface to get the damaged mesh. To do so,
we create an edge between each boundary
vertex and it's corresponding "pushed"
vertex. Then we fill in the triangles using
pymeshfix.

• The damaged mesh will enclose the
damage volume.

https://pymeshfix.pyvista.org/

© MERL

DamageEst

Boolean Operations

𝐴 𝐵

𝐴 ∩ 𝐵 𝐴 ∪ 𝐵

𝐴 − 𝐵 𝐵 − 𝐴

© MERL

DamageEst

9. Take Boolean Intersection (Find Overlapping Volume)

© MERL

DamageEst

Result

View down the edge of the
damaged volume

These are the same line

© MERL

But, does it actually work?

Undamaged Parts

Damaged Part Scan

(hint to self – pass around samples now)

© MERL

DamageEst

1. Get Inner Damage Surface Points

© MERL

DamageEst

2. Reconstruct Inner Damage Surface

© MERL

DamageEst

3. Find the Boundary of the Damage Surface

© MERL

DamageEst

4. Create the Background Mesh

© MERL

DamageEst

5. Push Boundary to the Background Mesh

© MERL

DamageEst

6. Connect Pushed Cycle

© MERL

DamageEst

7. Split the Background Mesh

© MERL

DamageEst

8. Connect to the Damage Surface

© MERL

DamageEst

9. Take Boolean Intersection (find overlapping volume)

© MERL

DamageEst

Results

© MERL

Pushout/Split Method

Results

© MERL

Pushout/Split Method

Results

© MERL

Comparison to State of the Art (Method 1, “Li et al”)

• Li’s method compares a point cloud scan of
a damaged part to an undamaged part.

• Li’s method takes far longer to run then
ours.

• Li’s method is iterative, ours isn't.

Comparison of Methods

Algorithm Part Number of Points Number of
Iterations

Runtime (s)

Damage Est Torus 50,000 1 12

Damage Est Dragon 100,000 1 7

Standard ICP Model P 30,000 54 2415

Modified ICP Model P 30,000 30 1713

© MERL

Comparison to State of the Art (Method 1, “Li et al”)

• Li’s method assumes that only "small"
damage depths can be repaired due to
the maximum depth of damage
constraint.

• Our method can estimate large missing
components without considering a
maximum depth constraint.

• Li’s method detects additive and
subtractive estimates at the same step.
Ours considers these estimates
separately.

© MERL

Comparison to State of the Art (Method 1 “Li et al”)

• Li’s method classifies the vertices as
defective, maps any undamaged vertices to
the nearest undamaged vertex in the original
part, then attempts to recreate the entire
surface of both the damaged and
undamaged clouds. Finally, they take the
Boolean operations.

• We use the background mesh to help
counter noise and inaccuracies in the point
cloud scans. In addition, this helps with
inaccuracies in the reconstruction process.

© MERL

Comparison to State of the Art (Method 2, “Perini et al”)

• Perini’s method uses an octree to estimate
the damage volumes. They estimate the
damage volume and original part as cubic
blocks.

• We only consider the surfaces of the
damaged part and the original part.

© MERL

Comparison to State of the Art (Method 2, Perini et al)

• For less precise estimates, Perini’s method
works well. As precision increases, the
computation scales exponentially (note the
first plot is logarithmic).

• This scaling limits the precision for larger
parts if the runtime is to be kept reasonable.
This is true even for simpler meshes.

• The plots on the right are only for building
the octree. Their implementation of the
Boolean difference is also an exponential
algorithm. (But the paper claims their
implementation only takes a few seconds to
run in practice)

© MERL

Comparison to State of the Art (Method 2, Perini et al)

• Our method has the maximum
allowable precision (up to the point cloud
scan's resolution and the float precision).

• Our entire pipeline works on meshes with
similar complexity to their meshes, but
without the runtime required for their
method at high precision.

• Our bottleneck comes from the number of
intersections of the background mesh and
original STL, rather than the number of
triangles.

© MERL

Comparison to Method 2 (Gear)

Comparison of Methods on Gear Damage Estimation

Method Runtime (averaged over 10 runs)

Ours (“Damage Est”) 2.9 s

Voxel (Depth 7) 10.4 s

Voxel (Depth 9) 18.2 s

Voxel (Depth 11) 149.1 s

Gear

Damaged Point Cloud Scan

© MERL

Comparison to Method 2 (Gear)

© MERL

Comparison to Method 2 (Gear)

Damage Est Voxel (Depth 7)

Voxel (Depth 9) Voxel (Depth 11)

© MERL

Comparison to Method 2 (Gear)

• For the voxel method, it is necessary to set a
threshold when determining if a voxel is
contained in the damage volume. High
thresholds lead to underestimation, low
thresholds lead to artifacts on sharp corners
of the original STL. These may require post
processing.

• DamageEst leads to very few artifacts and
preserves sharp features in the original STL.

Damage Est

Voxel (Depth 11, High Threshold) Voxel (Depth 11, Low Threshold)

© MERL

Comparison to Method 2 (Perini et al fixing the Torus)

• We compared the runtimes DamageEst to
the voxel method for a second (Torus) part.
This is the same torus part we showed in our
previous presentation.

• The runtimes are about the same at 9
iterations of the voxel method.

• Even with more complicated parts (involving
more complicated Boolean operations),
DamageEst gives high quality reconstructions
without exponential scaling.

© MERL

• The existing best method (Perini et al) uses voxels to estimate the
damaged and undamaged regions of the part.

• This method is exponential in both memory and time, but yields
accurate estimates in reasonable runtimes for small parts.

• Even with adaptive octree, curved surfaces and boundaries can increase
runtimes in practice.

• With larger octree depths, the estimate becomes more accurate.

Existing Best Method

Perini 2020, Figure 8, Diagram, Rapid
Prototyping Journal, Vol 26, Number 5, pg
930

© MERL

Thank you I!

Questions ?

Discussion ?

	Slide 1: DamageEst: Accurate Estimation of Damage for Repair using Additive Manufacturing
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

