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Graduated Non-Convexity (GNC)
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➤ GNC is a robust estimation algorithm that removes the dependency of the
shape of the robust loss function by solving:

θ˚
“ argmin

θ

N
ÿ

i“1
ρσ pr pxi, θqq ,

where ρσp¨q is, e.g., the Geman-McClure loss;
➤ GNC is highly effective in computer vision

tasks like 3D registration and pose graph
optimization, where robustness is essential.

Principles of the GNC algorithm:
•At each iteration k, update σk according to σk “

σk´1

γGNC
, where γGNC is a

fixed annealing factor;

•Iterate until a predefined σend is reached.

GNC’s Limitations
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➔ Previous GNC-based approaches use a fixed annealing factor γGNC and a predefined σend;
➔ It is challenging to set γGNC and σend (data-dependent):

No “ideal” γGNC No “ideal” σend

➔ Previous methods assume a continuous decrease of σ leads to the best solution, i.e., the
model estimate of the next iteration will be better than the current model.

Our Contributions
➤ A novel GNC-based adaptive annealing strategy for robust and efficient estimation;
➤ We show that combining sample & consensus (discrete) into GNC (continuous) has benefits

over previous approaches;
➤ Experiments in real-world data in 3D registration and pose graph optimization show that

SAC-GNC outperforms baselines in accuracy and efficiency.
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SAmple Consensus for adaptive GNC
Diagram of the proposed online searching strategy :
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Sample T annealing factors
γk,t P rγGNC ¨ α´, γGNC ¨ α`s

Promising models are
added to a priority

queue to explore next

Notation:
γ Annealing factor
σ Shape parameter
θ Model computed
s Model score

Online search for σ

1.Annealing sampling – γk,t P rγGNC ¨ α´, γGNC ¨ α`s, t P t1, ¨ ¨ ¨ , T u;
2.Model scoring (e.g., MSAC);
3.Priority queue search;
4.Save the best hypothesis.

•Relaxation (α˘) of the fixed annealing factor γGNC;

•Do not assume decreasing σ always leads to better solutions;

•Allows exploring various promising solutions.

Algorithm 1: SAC-GNC
Input – Data D; annealing parameter γGNC; number of
trial hypotheses T .
Output – Best hypothesis H˚ “ tσ˚, θ˚, s˚, d˚u.

1 k Ð 0, Q Ð empty queue, H0 Ð tσ0, θ0, 8, 0u;
2 θ0 Ð compute_initial_model pDq;
3 σ0 Ð shape_initialization pθ0q;
4 while True do
5 k Ð k ` 1;
6 tσk´1, θk´1, sk´1, dk´1u Ð Hk´1;
7 for t “ 1 : T do
8 γk,t Ð get_annealing pγGNC, α˘q;
9 σk,t Ð update_shape pσk´1, γk,tq;

10 θk,t Ð compute_model pD , θk´1, σk,tq;
11 sk,t Ð compute_score pD, θk,tq;
12 dk,t Ð dk´1 ` 1;
13 Hk,t Ð tσk,t, θk,t, sk,t, dk,tu;
14 Q Ð add_to_queueptHk,iuq;
15 H˚ Ð save_best_hypothesispH˚, tHk,iuq;
16 if stopping_criteriapQ, H˚q then
17 break;
18 Hk Ð get_next_hypothesispQq;

Stopping criteria

1.Check for model or scoring conver-
gence;

2.Queue is empty.
•No need for a predefined σend.

Initialization
Compute a σ0 that approximates a
least-squares solution, by making the
data point with maximum residual,
rmax, weight « 1:

w “

´

1
1`r2

max{σ2
0

¯2
ô σ0 “ rmax

b

pw´1{2´1q

Experiments and Results
➤ 3D registration

3DMatch dataset

➔ SAC-GNC handles outlier rates
up to 90%.

peR, 5˝q peR, 10˝q pet, 0.3mq pet, 0.6mq

RANSAC 0.492 0.707 0.713 0.829 5.13
FGR 0.514 0.693 0.706 0.804 16.5

TEASER++
GNCp 0.553 0.726 0.738 0.831 5.61

SAC-GNC 0.584 0.750 0.756 0.842 3.98
SAC-GNC++ 0.586 0.753 0.759 0.846 18.4

RANSAC 0.279 0.446 0.455 0.577 21.6
FGR 0.271 0.417 0.443 0.549 12.6

TEASER++ 0.287 0.441 0.429 0.555 125
GNCp 0.348 0.491 0.509 0.603 25.7

SAC-GNC 0.421 0.539 0.544 0.616 7.05
SAC-GNC++ 0.435 0.560 0.565 0.640 56.6
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➤ Pose graph optimization on SLAM sequences
intel csail

m3500

➔ SAC-GNC is the most efficient
without losing accuracy;

➔ SAC-GNC outperforms GTSAM in
accuracy for ą 50% outliers.

➤ Ablation studies

peR, 5˝q pet, 0.3mq

0.465 0.612 28 7.45
✓ 0.457 0.605 13.8 5.82

✓ 0.487 0.619 11.9 7.47
✓ ✓ 0.487 0.618 10.9 6.80
✓ ✓ 0.490 0.622 7.83 6.69
✓ ✓ ✓ 0.490 0.623 6.72 5.98

σ Search Stopping
Criteria Initialization

mAA Ò
Iter. Ó

Time Ó

[ms]
➔ σ search improves accuracy the

most;
➔ Initialization and stopping criteria

add efficiency without compromis-
ing accuracy.


