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Introduction

* Previous works:
=> Considers only long-tailed anomaly detection or only noisy/contaminated anomaly detection

* Noisy long-tailed anomaly detection:
=> Realistic scenario which is more challenging. Solving such task is practical.

* Setup
=> Only head class is contaminated with noisy samples and tail class (< 20samples) exists.

Motivation

* Tail-versus-noise trade off :
I) Noise discriminative models, such as
SoftPatch removes statistically minor patches
assuming less frequent data is noise. However, this
accidently also removes tail classes as shown in
the figure above (red bar).
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2) Greedy sampling used in patchcore samples tail
classes well due to the nature of greedy sampling,
however, also favors noisy patches as well as
shown in the figure above (green bar)
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Contributions

Suggest a practical and challenging anomaly detection scenario: noisy long-tailed anomaly detection

* Propose a memory-based anomaly detector TailedCore whose memory bank is both noise-free and
augmented with tail class features utilized by an exclusive tail-class sampler TailSampler which estimates class
size.

* Analyze proposed TailedCore and compare with few-shot and noise discriminative anomaly detection
methods.

Pipeline:

* TailSampler : Selectively sample long-tail class samples while excluding noisy samples with GAP features as
global features are less affected by anomalies(noise) which are mostly local attributes.

* Denoise with existing noise discriminative methods (e.g. SoftPatch) with S¢;.4,, (P)

* Collect patch features S;4;; (P) from TailSampler and merge with denoised patches
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* Sort out long-tail samples by estimating the size of classes from each samples.
* Given percentile p, estimate the neighbors of embedding e;, !
Hy ={e€Z:4(e;e) <m;/2}

for every e; with the set of all embeddings Z, where

m; = max 4(e;, )

Get adaptive angle containing p-th percentile of the half-max-angle region

a; = 4
sorted in increasing order.
* With ¢; and
Ny(e) ={e
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denoting the neighborhood of e; (the set of all train embedding e within angle a of e;) estimate its class size based on neighborhoods of

neighborhoods by

K; =
eEN

mode (|Na(e) (e) |)

where a(e) is the adaptive angle with respect to embedding e belonglng to the neighborhood N, (e;) of embedding e;.

* With k;, estimate size of each classes 7,, = |, | inductively by

Ny) = round | —— K@)

Kﬂ(y),

i=Ny—1+1

and find maximum size of tail classes with elbow technique where 7; abruptly changes.

Experiments & Results

* Dataset setup : Pareto / Step K=4 / Step K = | (K is number of long-tail class samples). For step, 60% of the classes are long-tailed.

Head classes are all contaminated (10% for MVTec, 5% for VisA)
* TailedCore outperforms few shot methods (WinCLIP, Anomal
models (SoftPatch) on tail classes C;

tail type Pareto step (K =4) step (K =1)
classtype C, Cp  all C Cp al G G al

yCLIP) with noisy samples (C}) and exceeds noise discriminative

tail type Pareto step (K =4) step (K =1)
classtype C, Cj all C; Cp al C, Cp al

Ablation (Tail Class Sampler)

* Classification accuracy of tail-classes/noisy samples (x-axis) vs metrics (y-axis) relevant to class size prediction
and few-shot sampling with step K=4. (a to h from left to right and top to bottom)

* Correlation is strong for (a) mis-sampling ratio, (b) ratio of missing few-shot samples, (e) class size
prediction error, and (f) AUROC for few-shot prediction.

* Better embeddings improve TailSampler which in turn improves (g) anomaly classification (image-level AUROC)
and (h) anomaly segmentation (pixel-level AUROC) performance.
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Limitation

PaDiM [9] 1cpr21 8245 80.95 8206 7747 8128 79.19 7154 8175 75.63
HVQ [26] newtps23 8346 8023 8299 8201 8550 83.56 74.15 90.15 80.55
WinCLIP [19] cver23 89.35 90.11 9037 91.60 8821 9037 91.80 88.23 9037
AnomalyCLIP [43] e 9093 9098 9148 9182 90.83 9148 9121 91.90 9148
PatchCore [34] cver 93.33 87.59 89.18 92.19 71.18 83.83 86.36 70.48 80.01
SoftPatch [20] Newtps22 8468 8695 87.71 67.65 9754 79.64 60.66 9749 7540

PaDiM [9] 1cprr21

HVQ [26] Neurtps 23
‘WinCLIP [19] cvpri23
AnomalyCLIP [43] icLr24
PatchCore [34] cvpr22
SoftPatch [20] Neurips 22

90.11 9266 9143
93.63 8685 90.55
82.03 84.06 82.29
9124 9169 91.08
93.56 87.98 89.93
92.19 9383 9341

82.53 9529 87.67
90.73 92.58 91.53
80.60 84.63 8229
89.96 92.66 91.08
93.54 7209 85.19
8098 9649 87.24

78.80 9554 85.50
86.36 9520 89.90
80.16 8548 82.29
89.34 93.68 91.08
92.02 7135 8375
7034 96.89 80.99

TailSampler can fail if

* The reflective-symmetric assumption on inter, intra-class similarities break down (by poor embedding
representation or not aligned with label space well)

TailedCore (ours) 9655 9524 9612 9582 9534 9571 9354 9577 9443
Table 1. Anomaly classification on MVTecAD with image-level AU-
ROC (%). We report the mean over 5 random seeds for each measure-
ment. Notations: C}, / C;: head / tail classes.

tail type Pareto step (K =4) step (K =1)
classtype C, Cp  all G Cp al C Cp al
PaDiM [9] icpr21 70.70 8335 78.64 60.65 8893 72.43 5598 86.75 68.80
HVQ [26] Neurtps23 7347 8403 6825 68.25 8930 77.02 61.57 80.40 69.42
WinCLIP [19] cypras 7325 7692 7547 7598 7476 7547 78.80 70.80 7547
AnomalyCLIP [43] jcr2s 81.96 82.48 8205 8228 81.74 8205 83.26 8034 8205
PatchCore [34] cypr2z 86.11 85.73 8559 83.53 67.51 7685 79.33 68.56 74.84
SoftPatch [20] ewps22 78.04 92.16 86.56 5970 9597 74.81 52.61 94.17 69.92
TailedCore (ours) 87.55 93.06 90.85 8516 9591 89.64 82.97 94.11 87.61

Table 2. Anomaly classification on VisA with image-level AUROC

(%). The format and evaluation protocol are the same as Tab. 1.

TailedCore (ours) 96.08 95.01 9529 95.56 9320 94.74 9419 9370 93.99
Table 3. Anomaly segmentation on MVTecAD with pixel-level AU-
ROC (%). We report the mean over 5 random seeds for each measure-
ment. Notations: C}, / C;: head / tail classes.
tail type Pareto step (K =4) step (K=1)
classtype Cp C, all C, C, al C, Cp al

PaDiM [9] icprz1 89.02 95.10 82.81 8390 97.36 89.51 82.57 96.57 88.40

HVQ [26] Newtps'2s 95.27 97.60 9671 93.88 9834 9574 90.58 9551 92.63
WinCLIP [19] cvpr2z 7194 73.97 7319 7460 7121 7319 73.81 7232 73.19
AnomalyCLIP [43] g4 95.60 9546 9551 95.54 9548 9551 96.16 94.60 95.51
PatchCore [34] cver2 96.84 87.99 91.13 9539 62.96 81.88 94.11 6530 82.10
SoftPatch [20] Newps22 93.20 96.74 9527 8395 97.10 89.43 80.73 96.82 87.43
TailedCore (ours) 97.98 97.25 97.48 96.80 97.02 9689 96.12 97.39 96.65

Table 4. Anomaly segmentation on VisA with pixel-level AUROC (%).
The format and evaluation protocol are the same as Tab. 3.

* Geometric aspects of defect samples are similar to few-shot class instances in the embedding space.

Conclusion

*  We introduce a novel unsupervised anomaly detection task, noisy long-tailed anomaly detection.

*  We suggest TailedCore utilized with TailSampler, a unique class size predictor, and successfully navigated the tail-

versus-noise dilemma by exclusively sampling the tail classes, enhancing performance of noisy long-tailed anomaly
detection.



