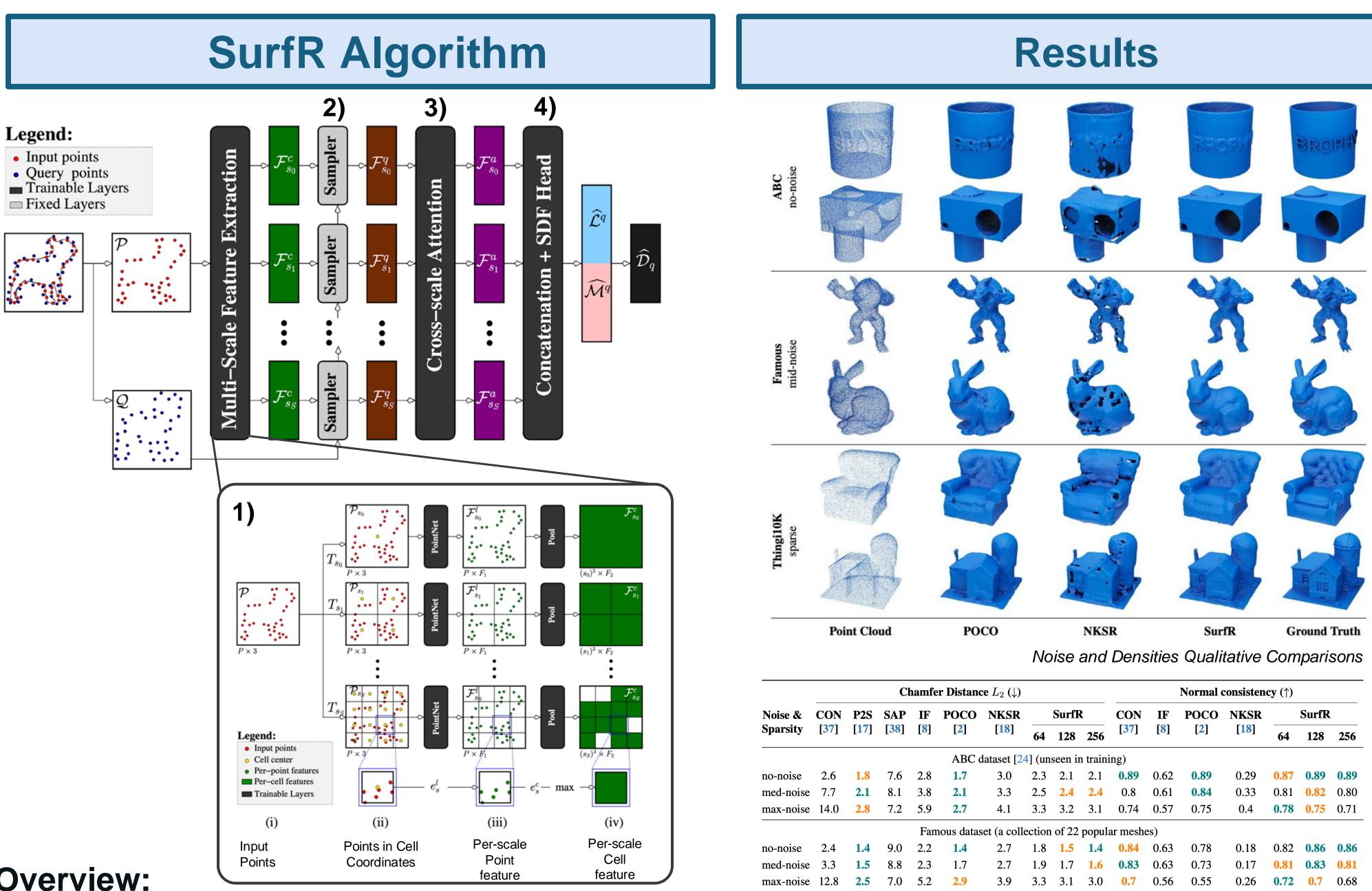
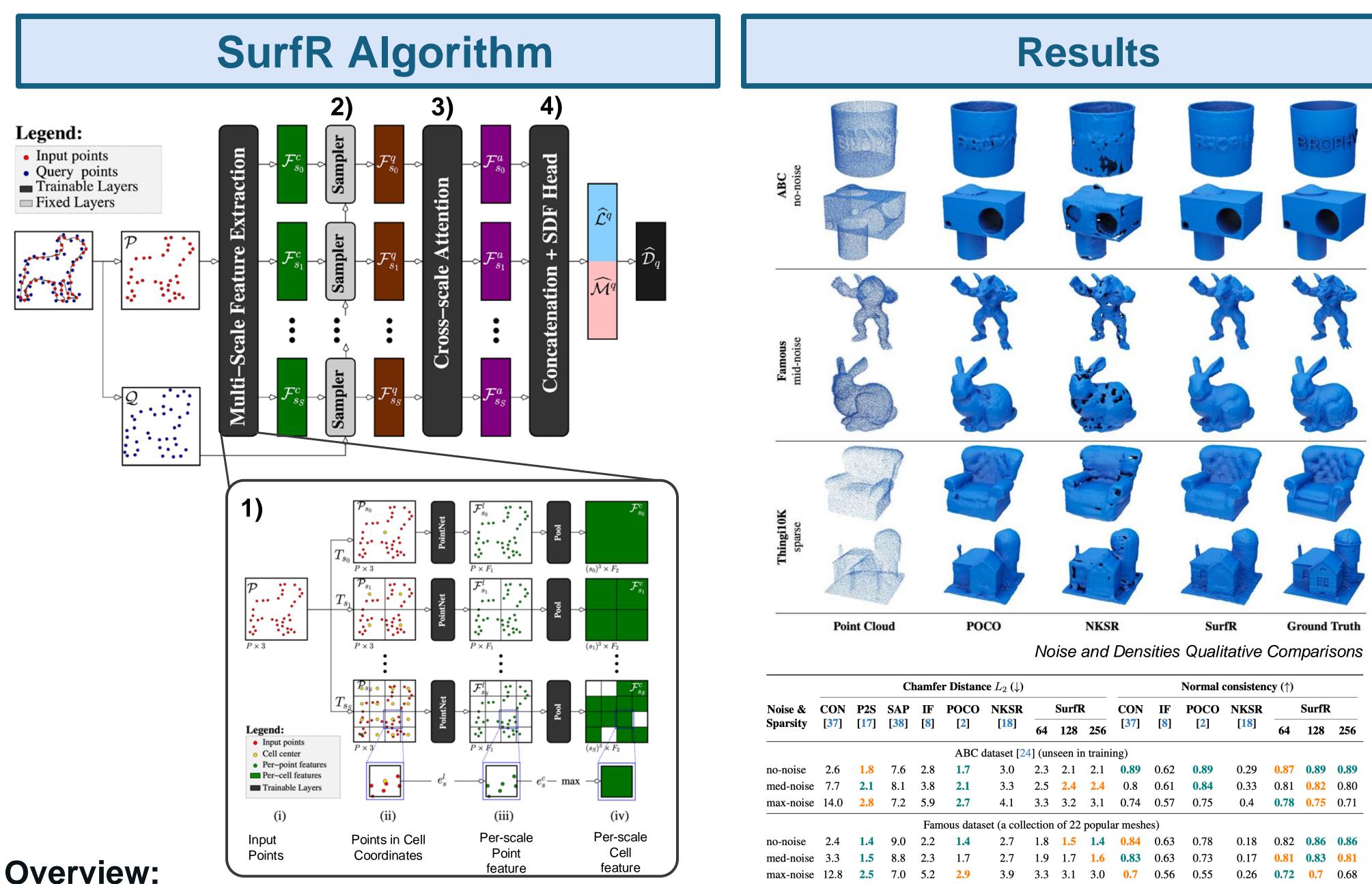


Pedro Miraldo³, Srikumar Ramalingam⁴

Motivation and Contributions

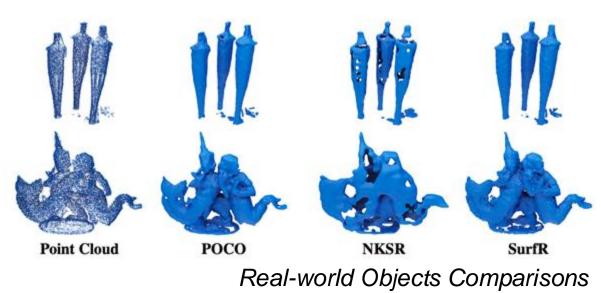

- Point clouds from real-world scans are usually sparse, noisy, and incomplete.
- Current reconstruction methods often **struggle** to balance both speed and accuracy, resulting in either fast but rough reconstructions or slow but detailed ones.
- **SurfR** introduces a fast and accurate implicit surface reconstruction method for unorganized point clouds, achieving an **excellent tradeoff** between speed and accuracy.



Key Contributions:

- Lazy query processing: Input points are processed all at once and then their features sampled according to the queries.
- Multi-scale features: Interpolate point features at different scale to better handle different noise levels and reconstruction detail.
- **Cross-scale attention:** Fuse features across scales improving details.
- **Best accuracy-speed trade-off.**

1) Multi-scale feature extraction: Partition the input point cloud into grid cells and extract features from each cell.


2) Query feature sampling: Sample features at query points using a combination of cell, neighbor, and relative position features.

3) Cross-scale feature fusion: Fuse features across scales using a transformer encoder layer to balance local and global information.

4) Signed distance regression: Regress concatenated features to estimate the SDF for surface reconstruction.

SurfR: Surface Reconstruction with Multi-scale Attention Siddhant Ranade^{1*}, Gonçalo Dias Pais^{2*}, Ross Tyler Whitaker¹, Jacinto C. Nascimento²,

University of Utah¹, Instituto Superior Técnico², Mitsubishi Electric Research Labs (MERL)³, Google Research⁴

1.9

1.3

1.4

5.7 1.9

Google Research

Chamfer Distance L_2 (\downarrow)							Normal consistency (↑)							
AP	IF POC	POCO	NKSR	SurfR			CON	IF	POCO	NKSR	SurfR			
38]	[8]	[2]	[18]	64	128	256	[37]	[8]	[2]	[18]	64	128	256	
	ABC dataset [24] (unseen in training)													
7.6	2.8	1.7	3.0	2.3	2.1	2.1	0.89	0.62	0.89	0.29	0.87	0.89	0.89	
8.1	3.8	2.1	3.3	2.5	2.4	2.4	0.8	0.61	0.84	0.33	0.81	0.82	0.80	
7.2	5.9	2.7	4.1	3.3	3.2	3.1	0.74	0.57	0.75	0.4	0.78	0.75	0.71	
	Famous dataset (a collection of 22 popular meshes)													
9.0	2.2	1.4	2.7	1.8	1.5	1.4	0.84	0.63	0.78	0.18	0.82	0.86	0.86	
8.8	2.3	1.7	2.7	1.9	1.7	1.6	0.83	0.63	0.73	0.17	0.81	0.83	0.81	
7.0	5.2	2.9	3.9	3.3	3.1	3.0	0.7	0.56	0.55	0.26	0.72	0.7	0.68	
0.4	2.6	2.0	3.2	2.4	2.1	2.1	0.81	0.63	0.67	0.18	0.77	0.79	0.77	
7.8	2.4	1.5	2.3	1.8	1.6	1.5	0.84	0.64	0.76	0.19	0.82	0.84	0.83	
Thingi10k dataset [54]														
3.4	2.1	1.4	2.7	1.8	1.5	1.4	0.92	0.65	0.92	0.22	0.89	0.92	0.91	
3.2	2.4	1.5	2.7	1.9	1.6	1.5	0.9	0.65	0.9	0.21	0.88	0.89	0.87	
5.9	5.5	2.7	3.9	3.3	3.1	2.8	0.76	0.58	0.71	0.3	0.79	0.76	0.73	
0.1	2.8	2.1	3.3	2.7	2.2	2.4	0.88	0.64	0.81	0.21	0.82	0.84	0.82	
7.1	2.4	1.4	2.3	1.8	1.5	1.4	0.91	0.65	0.91	0.2	0.89	0.91	0.89	
3.2	3.2	1.9	3.1	2.4	2.1	2.1	0.83	0.84	0.62	0.79	0.24	0.83	0.81	

Quantitative Baseline Comparisons

Pais was partially supported by LARSyS, Portuguese FCT funding (DOI:10.54499/LA/P/0083/2020, 10.54499/UIDP/50009/2020, and 10.54499/UIDB/50009/2020) and the FCT grant PD/BD/150630/2020 Pedro Miraldo is exclusively supported by MERL