Pixel-Grounded Prototypical Part Networks

Zachariah Carmichael*^{1,2}, Suhas Lohit², Anoop Cherian², Michael Jones², Walter J Scheirer¹ ¹University of Notre Dame, ²Mitsubishi Electric Research Labs

*zcarmich@nd.edu

Background

Al has a trustworthiness problem.

IBM's Watson supercomputer ecommended 'unsafe and incorrect cancer treatments, internal documents show

lembers of Congress With Mu

Problem

Prototypical Part Neural Networks

• Goal: Produce explanations of the form, *This* looks like *that*

Solution

PixPNet: Pixel-Grounded Prototype Network

Guarantee faithful part localization by design

• Key idea: constrain backbone receptive field (accuracy-localization precision trade-off)

Algorithm

cognition match led to a Michigan man's arrest for a crime he

Detroit police chief cops to 96-percent facial recognition error rate

irst known case of its kind, a faulty facia

Post hoc explanation has a trustworthiness problem.

- Post hoc explainers disagree
- Post hoc explanation fidelity is unverifiable
- Post hoc explainers can be fooled
- Humans can be fooled by explanations
- "Researcher degrees of freedom"

1115 explanation

- (a) Object attention (b) Part attention (class activation map)
 - (c) Part attention + comparison with learned prototypical parts (our model) (attention-based models)
- Inference
- Image embedding
- Similarity pooling
- Linear combination of scores
- Prototype Training
 - Learnable prototype vectors
 - Project closest training patches onto prototype vectors
- Prototype Visualization & Localization

`				$oldsymbol{S}_i$	1			
Results								
 Outperforms ProtoPNet accuracy on CUB- 200-2011 and Stanford Cars datasets 								
 Does not rely on bounding box annotations 								
	Backbone	MRF	Acc. ↑	PSM	$S_{ m con}$	$S_{ m sta} onumber \ \uparrow$	AUSC ↑	%2R ↓
• Interpretabil-	VGG11 @maxpool4	8.31	72.9	Ours Orig.	65.3 45.8	48.3 44.0	0.99 0.90	11.2 30.5
ity Metrics:	VGG13 @maxpool4	9.69	75.3	Ours Orig.	66.9 48.1	45.0 41.8	0.97 0.88	13.0 84.1
 Semantic 	VGG16 @maxpool4	15.7	76.4	Ours Orig.	62.0 46.8	46.4 42.2	1.02 0.89	6.98 35.5
consistency	VGG19 @maxpool4	22.8	77.1	Ours Orig.	60.1 48.4	42.5 41.3	0.94 0.80	21.4 99.9
 Semantic 	VGG13 @maxpool5	33.5	78.1	Ours Orig.	67.0 43.7	42.5 39.9	0.90 0.81	29.5 99.2
Stability	VGG16 @maxpool5	52.5	79.8	Ours Orig.	69.5 44.1	51.6 42.4	0.90 0.82	32.0 55.5
 Relevance 	WRN50 @layer3	69.9	80.1	Ours Orig.	56.4 56.4	64.7 47.6	0.93 0.85	13.0 39.6
Ordering	VGG19 @maxpool5	70.4	80.1	Ours Orig.	47.6 45.8	64.2 46.0	0.92 0.85	43.4 92.9
Test	ResNet18 @layer2	15.4	57.2	Ours Orig. PRP	59.2 25.2	46.6 45.6	0.98 0.88 0.95	4.10 96.8 25.4
	ResNet50			Ours	47.9	62.0	0.58	72.8

Dombrowski, Ann-Kathrin, et al. "Explanations can be manipulated and geometry is to blame." Advances in neural information processing systems 32 (2019). Slack, Dylan, et al. "Fooling LIME and SHAP: Adversarial attacks on post hoc explanation methods." Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. 2020.

Hedström, Anna, et al. "The Meta-Evaluation Problem in Explainable AI: Identifying Reliable Estimators with MetaQuantus." arXiv preprint arXiv:2302.07265 (2023).

Krishna, Satyapriya, et al. "The disagreement problem in explainable machine learning: A practitioner's perspective." arXiv preprint arXiv:2202.01602 (2022).

Li, Oscar, et al. "Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. No. 1. 2018.

Chen, Chaofan, et al. "This looks like that: deep learning for interpretable image recognition." Advances in neural information processing systems 32 (2019).