Existing methods utilize a guidance function to adjust a diffusion model’s noisy estimate z_t at each time step.

We compute the denoised estimate \hat{z}_t at each time step and compute the steering loss using this estimate.

For certain tasks, a looping scheme helps: For each t, we perform the implicit steered diffusion step multiple times.

Differences from existing diffusion-based methods

- Conditional generative models typically require large annotated training sets to achieve high-quality synthesis.
- We propose Steered Diffusion: a diffusion-based solution for zero-shot conditional image generation.
- Our method incorporates off-the-shelf models and performs conditional sampling without the need for any task-specific training.
- Steered Diffusion combines a diffusion model trained for unconditional generation with a pre-trained/predefined steering function to perform zero-shot conditional generation.

Widespread applications of Steered Diffusion

(a) Inpainting (b) Colorization (c) Super-resolution

(d) Semantic Generation (e) Identity Replication (f) Text-based editing

Quantitative results and comparisons:

- For steered diffusion, we need an inverse mapping from the output image space to the input space of the condition. This can be a neural network or a predefined inverse mapping function.
- In complex conditional mappings (such as identity replication and semantic generation), we utilize off-the-shelf neural networks to perform the inverse mapping from a denoised image to the condition.
- For linear inverse problems (such as inpainting and super-resolution), the inverse mapping is a known linear degradation function D. We replace the degraded part by the conditioning input c and proceed with sampling process.

Implicit steering control corrects (steers) the implicit prediction according to a loss function. The loss function is chosen according to the condition, c.

Implicit steering control corrects (steers) the implicit prediction according to a loss function. The loss function is chosen according to the condition, c.

For steered diffusion, we need an inverse mapping from the output image space to the input space of the condition. This can be a neural network or a predefined inverse mapping function.

In complex conditional mappings (such as identity replication and semantic generation), we utilize off-the-shelf neural networks to perform the inverse mapping from a denoised image to the condition.

For linear inverse problems (such as inpainting and super-resolution), the inverse mapping is a known linear degradation function D. We replace the degraded part by the conditioning input c and proceed with sampling process.

Implicit steering control corrects (steers) the implicit prediction according to a loss function. The loss function is chosen according to the condition, c.

For steered diffusion, we need an inverse mapping from the output image space to the input space of the condition. This can be a neural network or a predefined inverse mapping function.

In complex conditional mappings (such as identity replication and semantic generation), we utilize off-the-shelf neural networks to perform the inverse mapping from a denoised image to the condition.

For linear inverse problems (such as inpainting and super-resolution), the inverse mapping is a known linear degradation function D. We replace the degraded part by the conditioning input c and proceed with sampling process.