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Most object detectors work well when provided with sufficient training data.

▪ Suffer overfitting due to over-parametrization in data scarce regime.

▪ RGB trained model does not generalize well to infrared/thermal due to significant domain shift.

Our task: Object detection in the data scarce infrared (IR) domain.

Given: Large amount of publicly available RGB training data.

Research questions:

▪ How to achieve generalizability for object detection from few labelled IR training samples?

▪ Can we leverage the abundance of annotated RGB data for object detection, in the IR domain?
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Problem Statement
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Related Works

1. T. Guo et al. Domain-Adaptive Pedestrian Detection in Thermal Images. ICIP19. 
2. M. Kieu et al. Robust pedestrian detection in thermal imagery using synthesized images. ICPR20.

▪ Robust Pedestrian Detection in Thermal Imagery using Synthesized Images [2].

▪ Domain-Adaptive Pedestrian Detection in Thermal Images [1].

Color Real Thermal Synthetic Thermal

Synthetic thermal image generated from 
color images in the KAIST test set.Training of the domain adapter. Training of the detector with synthetic thermal 

images generated by a trained domain adapter.

Joint training of the domain adapter and the 
pedestrian detector in the thermal infrared domain.

Sample synthetic thermal image 
transformed from the Caltech dataset.

Color Synthetic Thermal

Step 1: Generate Synthetic Data Step 2: Train over Augmented Data Step 3: Test over Real Data

The domain shift between RGB and 
IR is significant, so the synthesized 
IR images from RGB can be 
unrealistic and they may not 
capture the IR- specific information 
which is not in RGB.
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Challenges in acquiring IR data:

▪ Hardware cost and constraints (less ubiquitous than RGB cameras).

▪ Expensive and time-consuming data annotation process.

▪ Privacy concerns and export control regulation.

There exists common feature cues in both RGB and IR data.

▪ Exploit cross-modal cues at the model level.

Advantages of domain adaptation methods:

▪ Reduce data acquisition efforts.

▪ Reduce computational costs.
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Motivation: Relatively Scarce IR Data
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▪ TensorFact: A novel tensor factorization method that can leverage both:

▪ modality-specific cues.

▪ cross-modal cues. 

for effective object detection in the IR data, where acquiring sufficient training data is a challenge.

▪ TensorFact outperforms the competing state-of-the-art object detector trained directly on 
data scarce target IR domain while retaining source RGB domain performance.
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Contributions
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Technical Background

𝑋𝑆×𝐻×𝑊  ∗ 𝐾𝑇×𝑆×𝐷2×𝐷1 = 𝑌𝑇×𝐻′×𝑊′Convolution layer:

Tensor: n-D array
▪ 1-D array – Vector
▪ 2-D array – Matrix
▪ ≥3-D array – Tensor

Decomposed convolution filter:
▪ 𝐌 𝑝,𝑞 = σ𝑐=1

𝑟 𝐀 𝑝,𝑐 𝐁 𝑐,𝑞

• 𝑝 = 1,2, … , 𝑇𝑆

• 𝑞 = 1,2, … , 𝐷2𝐷1

▪ 𝐾 𝑡,𝑠,𝑑2,𝑑1
= 𝐌 𝑡−1 𝑆+𝑠, 𝑑2−1 𝐷1+𝑑1

• 𝑡 = 1,2, … , 𝑇

• 𝑠 = 1,2, … , 𝑆

• 𝑑2 = 1,2, … , 𝐷2

• 𝑑1 = 1,2, … , 𝐷1

Vector        Matrix             3-D Tensor

Input           Convolution Filter          Output
(Trainable Parameters)
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TensorFact: Designed to tackle data scarcity in the IR data.

For RGB: Low-rank decomposed convolution filter.

For IR: Capacity augmentation
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Proposed Method — TensorFact

For Standard Convolution Filter:
▪ # trainable parameters (𝑃)  = 𝑇𝑆𝐷2𝐷1

For RGB: 𝐀 & 𝐁 are SVD initialized

▪ # trainable parameters 𝑃𝑓𝑎𝑐 = 𝑟(𝑇𝑆 + 𝐷2𝐷1)

In general, 0 < 𝑟 ≤ 𝑟𝑚𝑎𝑥 ,  𝑟𝑚𝑎𝑥 = min(𝑇𝑆, 𝐷2𝐷1).
For varying 𝑟 across network layers using a single 
variable - Introduce 𝛼 hyperparameter.
▪ 𝑟 = 𝛼𝑟𝑚𝑎𝑥  , 𝛼 ∈ (0,1] 
▪ 𝑃𝑓𝑎𝑐 = 𝛼𝑟𝑚𝑎𝑥(𝑇𝑆 + 𝐷2𝐷1)

For IR:

▪ # trainable parameters ∆𝑃𝑓𝑎𝑐 = ∆𝑟(𝑇𝑆 + 𝐷2𝐷1)

• ∆𝑟 = ∆𝛼𝑟𝑚𝑎𝑥
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2-Branch Architecture:

To promote learning complementary features, we propose the following loss term:

▪ max( 𝐾 𝑋 − ∆𝐾(𝑋) 𝑝),  𝑝 = 1,2
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Proposed Method — TensorFact (cont’d)

Fixed

Trainable

Trained on RGB data

Train on IR data

Learn complementary features: ∆𝐾(𝑋) = 𝑌 − 𝐾(𝑋)

IR Input
Features extracted by top-branch

Complementary features 
extracted by bottom-branch

To increase the distance between feature maps
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Baseline: YOLOv7

▪ # Trainable Parameters: about 37 M.

Datasets: 

▪ FLIR Aligned RGB

• Classes: Person, Bicycle, and Car.

▪ FLIR ADAS v1 IR

• Classes: Person, Bicycle, and Car.

• Dataset Configuration: 

o Data constrained (Use only 1% of training data).

Evaluation Metric:

▪ Mean Average Precision (mAP) =
1

𝑛𝑐
σ𝑖=1

𝑛𝑐 ത𝑃𝑖

• mAP 50

• mAP 50-95
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Experiment Setup

FLIR ADAS v1 IR (1%) dataset and instances distribution

Split #Images

Train 62

Val 1572

Total 1634

Class #Train Instances #Val Instances

Person 161 4611

Bicycle 24 842

Car 351 8472

Total 536 13925

FLIR Aligned RGB dataset and instances distribution

Split #Images

Train 4129

Val 1013

Total 5142

Class #Train Instances #Val Instances

Person 8987 4107

Bicycle 2566 360

Car 20608 4124

Total 32161 8591

ത𝑃𝑖: Average Precision for 𝑖𝑡ℎ class
𝑛𝑐: number of classes

1. Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. CVPR. https://arxiv.org/abs/2207.02696
2. FLIR aligned. FLIR Aligned Dataset, 2020. Accessed: August 20, 2022.
3. Teledyne Technologies Incorporated. FLIR ADAS v1 Dataset, 2020. Accessed: August 20, 2022.
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Model # Parameters (M) ↓ Compression (%) ↑ mAP 50 (%) ↑ mAP 50-95 (%) ↑

YOLOv7 37.21 0 68.26 31.73

TensorFact (𝛼 = 0.9) 35.40 4.85 69.48 31.62

TensorFact (𝛼 = 0.8) 33.59 9.71 68.79 31.68
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Results

Model # Parameters ↓ Compression (%) ↑ mAP 50 (%) ↑ mAP 50-95 (%) ↑

YOLOv7 37.21 0 58.49 28.07

TensorFact (𝛼 = 0.1) 1.86 95.01 62.05 28.07

TensorFact (𝛼 = 0.2) 3.66 90.16 62.13 27.94

Results for FLIR Aligned RGB validation dataset

Results for FLIR ADAS v1 IR validation dataset

Regularization mAP 50 (%) ↑ mAP 50-95 (%) ↑

N/A 62.05 28.07

L1 62.34 28.23

L2 62.22 28.15

Results with explicit complementary regularization for 𝛼 = 0.1 on FLIR ADAS v1 IR validation dataset

Pre-trained

Pre-trained
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Qualitative Results

YOLOv7 fails to detect small and distant objects, but TensorFact can detect them.

Ground Truth YOLOv7 TensorFact
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Summary:
We propose TensorFact—a method to architecturally promote learning of cross-modal cues.

▪ Improve generalization for modalities with scarce training data (as low as 62 samples).

▪ Require only a fraction of trainable parameters (5% of total parameters).

▪ Empirically validated the efficacy of our method for object detection.

Future Work:

▪ Explore attention between RGB and IR branches during forward pass to reduce false detection.

▪ Extend to other applications (e.g. segmentation).
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Conclusions & Future Work
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Thank you!

Questions?
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