

LOCATION AS SUPERVISION FOR WEAKLY SUPERVISED MULTI-CHANNEL SOURCE SEPARATION OF MACHINE SOUNDS

Aalto University School of Electrical Engineering

Ricardo Falcon-Perez^{1,2}, Gordon Wichern¹, François G. Germain¹, Jonathan Le Roux¹ ¹Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA, ²Acoustics Lab, Aalto University, Espoo, Finland

 $L_i)$

 d_t .

137

Overview

Weakly supervised source separation

- We want to separate sounds that **cannot be recorded in** isolation
- Application: Machines with multiple noise-generating parts (e.g., fans, gearboxes, valves) that need to be operated simultaneously
- We propose a loss function based on the *difference* between expected and measured time delays across a microphone array, under the assumption that the source location is known a priori

Experiments & Results

- We simulate a dataset with challenging acoustical conditions
- We use samples from DCASE 2021 Task 2 dataset [1] as sources

Location Loss

$TPD(L_1), IPD(Y)$

measured IPDs real part, frame 10

 $TPD(L_0), IPD(Y)$

- NN architecture: Complex Unet [2] with 1 decoder output per source
- NN input features: complex STFT, IPDs, directional features [2], frequency positional encodings
- Results show better separation than signal-agnostic beamformers
- However, performance still lags fully-supervised setting

Method

Feature extraction based on measured interchannel phase differences (IPD), target phase differences (TPD), and directional features for P channels:

Real-IPD^{*p*}_{*t*,*f*}(**Y**) = \angle **Y**^{*p*₀}_{*t*,*f*} - \angle **Y**^{*p*}_{*t*,*f*} \in \mathbb{R} $IPD_{t,f}^{p}(\mathbf{Y}) = \cos(\text{Real-IPD}_{t,f}^{p}(\mathbf{Y})) + j\sin(\text{Real-IPD}_{t,f}^{p}(\mathbf{Y})) \in \mathbb{C}$ $\operatorname{TPD}_{f}^{p}(L_{i}) = \cos(2\pi f\tau(L_{i}, p)) + j\sin(2\pi f\tau(L_{i}, p)) \in \mathbb{C}$ $d_{t,f}(\mathbf{Y}, L_i) = \sum \operatorname{TPD}_f^p(L_i) \overline{\operatorname{IPD}}_{t,f}^p(\mathbf{Y}) \in \mathbb{C}$

Reconstruction loss ensures consistency:

$$\begin{aligned} \mathcal{L}_{\text{spec}} &= \left\| \mathbf{Y} - \hat{\mathbf{Y}} \right\|_{2}^{2} + \left\| |\hat{\mathbf{Y}}| - |\mathbf{Y}| \right\|_{2}^{2} \\ \mathcal{L}_{\text{spat}} &= \left\| \mathbf{y} \mathbf{y}^{\mathsf{T}} - \hat{\mathbf{y}} \hat{\mathbf{y}}^{\mathsf{T}} \right\|_{2}^{2} \end{aligned}$$

Location loss ensures separation:

Measured phase difference of the input mixture

Expected phase difference, based on the time delay of a point source arriving at each mic

When the sound source is located where we expect it to be (L_0) , the **<u>TPD</u> and the IPD match**. The real part is equal to the number of microphones (P = 6 in this example). The imaginary part is equal to zero.

When we expect the sound source to be somewhere else (L_1) , the **TPD and the IPD** do not match.

Dataset

- We simulate challenging reverberant conditions
- 2 sources, 11 mics linear array, harmonically spaced
- 2 machines from the DCASE2021 Task 2 Dataset as sources
- Simulated using PyRoomAcoustics:
 - Shoebox rooms, with randomized multiband materials
 - Image source for early reflections
 - Ray tracing for late part
- In total:
 - 24,000 mixtures of 10 seconds

Example of locations for mic array and sources

mics and souces positions

$$\mathcal{L}_{\text{loc}} = \sum_{i=1}^{2} \sum_{f} \sum_{t} \sum_{t} \left(\left\| \Re(d_{t,f}(\hat{\mathbf{S}}_{i}, L_{i})) - P \right\|_{2}^{2} + \left\| \Im(d_{t,f}(\hat{\mathbf{S}}_{i}, L_{i})) - 0 \right\|_{2}^{2} \right)$$

Total loss, combines all of them:

$$\mathcal{L} = \beta_{\rm spec} \mathcal{L}_{\rm spec} + \beta_{\rm spat} \mathcal{L}_{\rm spat} + \beta_{\rm loc} \mathcal{L}_{\rm loc}$$

• Split into 15,000 / 6,000 / 3,000

Table 1: Simulation constraints for array and source placement.

Parameter	Range
Distance between sources	[0.5,1.5]
Distance between sources and mic array center	[0.75, 2.0]
Distance between sources or mic, and room surface	$[0.5,\infty]$
Angle between mic array normal and sources	$[0^\circ, 30^\circ]$

Results

Performance in terms of mean \pm standard deviation of SI-SDR (dB) for different source separation approaches evaluated on datasets with 2 different sets of machines, and 2 different acoustical conditions. Set $A = [s_0 = \text{gearbox}, s_1 = \text{slider}]$; Set $B = [s_0 = \text{pump}, s_1 = \text{valve}]$.

			Anechoic				Reverberant				
	Trained on		Trained on SetA		Se	SetB		SetA		SetB	
Approach	Set	Reverb	$\overline{\text{SI-SDR}_0}$ \uparrow	$SI-SDR_1 \uparrow$	$\overline{\text{SI-SDR}_0}$ \uparrow	$SI-SDR_1 \uparrow$	$\overline{\text{SI-SDR}_0\uparrow}$	$SI-SDR_1 \uparrow$	$SI-SDR_0 \uparrow$	$SI-SDR_1 \uparrow$	
Mixture	n/a	n/a	-0.1 ± 4.4	0.1 ± 4.4	0.1 ± 2.5	-0.1 ± 2.5	0.0 ± 2.6	0.0 ± 2.6	0.1 ± 2.6	-0.1 ± 2.6	
Delaysum	n/a	n/a	-3.0 ± 7.1	-2.9 ± 6.7	-2.4 ± 5.8	-2.4 ± 5.7	-3.2 ± 5.1	-3.5 ± 5.2	-3.1 ± 5.1	-3.4 ± 5.3	
Ideal Binary Masks	n/a	n/a	8.7 ± 5.4	8.8 ± 5.3	8.8 ± 3.4	8.2 ± 3.3	9.0 ± 3.3	8.9 ± 3.2	9.1 ± 3.3	8.7 ± 3.2	
Fully Supervised	А	√	15.2 ± 2.5	15.6 ± 2.6	14.3 ± 2.3	14.4 ± 2.0	7.7 ± 3.3	7.7 ± 3.3	7.4 ± 3.3	7.3 ± 3.2	
Fully Supervised	А	X	21.4 ± 2.8	23.6 ± 3.2	18.9 ± 3.7	21.3 ± 3.3	3.8 ± 5.0	4.2 ± 5.0	$3.6 {\pm} 4.8$	4.0 ± 4.7	
WeakSup	А	\checkmark	4.8 ± 3.4	4.1 ± 2.5	5.7 ± 2.3	4.9 ± 2.0	1.6 ± 2.7	1.2 ± 2.3	1.8 ± 2.8	1.4 ± 2.5	
WeakSup	А	×	7.0 ± 3.4	7.1 ± 3.3	7.7 ± 2.2	7.5 ± 2.3	3.2 ± 2.8	3.2 ± 2.6	3.2 ± 2.9	3.2 ± 2.6	
Fully Supervised	В	\checkmark	11.9 ± 2.4	12.3 ± 2.5	11.5 ± 2.0	11.7 ± 1.7	6.5 ± 3.0	6.5 ± 3.1	6.4 ± 3.0	6.3 ± 2.9	
Fully Supervised	В	X	19.0 ± 2.5	19.4 ± 2.7	18.3 ± 2.6	18.8 ± 2.0	4.2 ± 4.4	4.1 ± 4.4	4.1 ± 4.3	4.0 ± 4.3	
WeakSup	В	\checkmark	4.0 ± 3.1	3.9 ± 2.8	4.7 ± 2.0	4.4 ± 1.8	1.7 ± 2.4	1.3 ± 2.3	1.7 ± 2.4	1.1 ± 2.2	
WeakSup	В	×	3.9 ± 3.9	3.7 ± 2.6	5.4 ± 2.4	4.8 ± 2.1	1.9 ± 2.7	1.5 ± 2.1	2.3 ± 2.7	1.6 ± 2.2	

Main findings:

- 1) Delay-and-sum (Baseline) is quite bad \rightarrow Challenging scenario
- 2) Weakly supervised (WS) is not as good as Fully Supervised (FS), but there is some separation:
 - FS is best when trained with reverb \rightarrow Avoids domain shift
 - WS is best when trained with anechoic \rightarrow Avoids noisy loss function
- 3) Signal content (training set) has little impact
- 4) Performance drops under high reverberation
 - IPDs are noisy and not reliable

References

Future Work

- Future work includes investigating more complex sound propagation models that are applicable to recorded data

- We will also explore few-shot learning applications, for example, where there is some data available about the acoustics of the environment, such as room impulse responses. [1] Y. Kawaguchi, K. Imoto, Y. Koizumi, N. Harada, et al., "Description and discussion on DCASE 2021 challenge task 2: Unsupervised anomalous detection for machine condition monitoring under domain shifted conditions," in Proc. DCASE, 2021. [2] R. Gu, S.-X. Zhang, Y. Xu, L. Chen, et al., "Multi-modal multi-channel target speech separation," IEEE J. Sel. Top. Signal Process., vol. 14, no. 3, pp. 530-541, 2020.

[3] K. Saijo and R. Scheibler, "Spatial loss for unsupervised multi-channel source separation," in Proc. Interspeech, 2022.