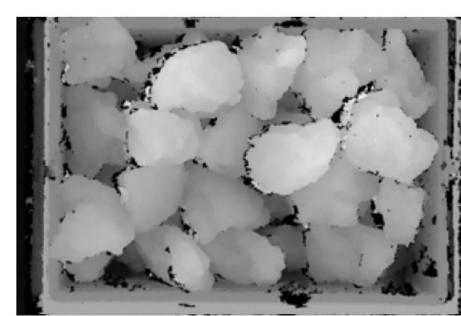


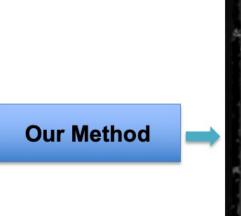
MITSUBISHI ELECTRIC **RESEARCH LABORATORIES, INC**

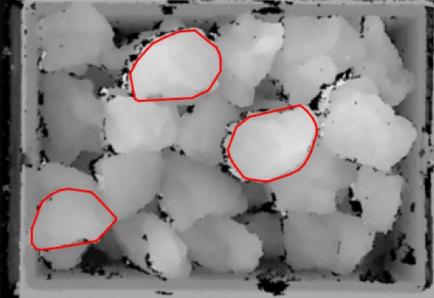
1. Problem: Instance Segmentation

Given a depth image consisting of multiple non-rigid instances of an approximately convex object, our task is to predict the segmentation masks for the instances. We assume to have access to only a few annotated training examples.



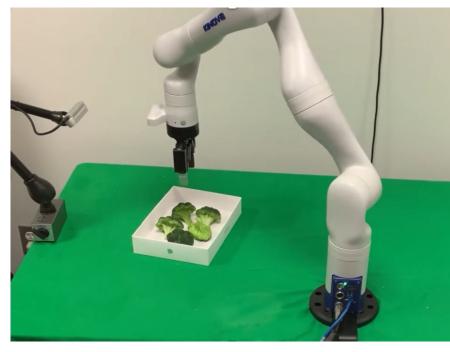
Input: Depth image (with chicken nugget instances)





Output: Predicted instance segmentations for some instances

Why not predict all instance segmentations? We consider a robotic bin-picking setting where the robot picks one instance at a time. Thus, segmenting some pickable instances is sufficient, and once those are picked up, we could iteratively apply the method to the remaining instances.



2. Contributions

- We present a simple approach *discriminative 3D shape modeling using surface geodesics* – for instance segmentation in depth images
- Our method needs only a few annotated examples to train our model, is very **fast** to train and predict (10 min to train and 0.1s to predict using a CPU)
- Our method shows large-margin improvements in instance segmentation performance on our challenging Food-Items dataset.

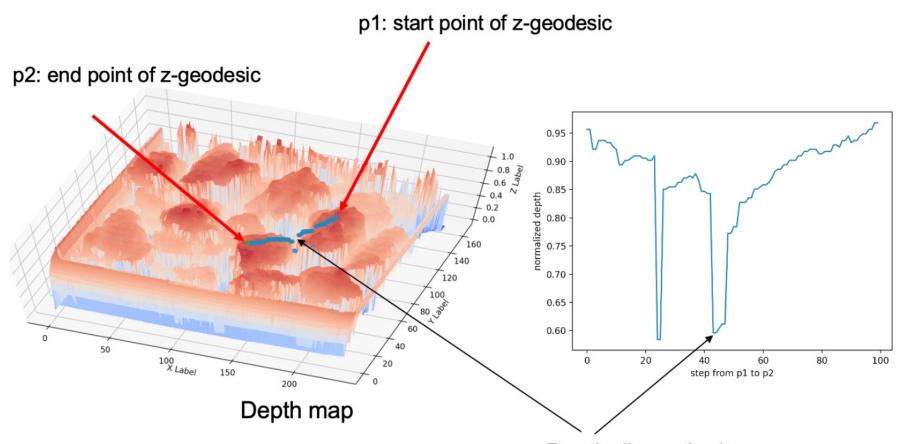
3. Prior Works

- Supervised Methods: Mask-RCNN and related methods
 - > Needs many annotated training examples, could be expensive or challenging to gather in changing real-world conditions.
- Unsupervised Methods: InSeGAN, Slot Attention, IODINE, etc.
 - > Needs a large-sized (e.g., thousands of images) of unannotated data
 - > May be time consuming
- Our method needs only few-shot annotated examples to train our model.

Discriminative 3D Shape Modeling for Few-Shot Instance Segmentation

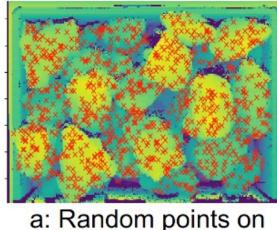
Anoop Cherian Siddarth Jain Tim K. Marks Alan Sullivan Mitsubishi Electric Research Labs (MERL), Cambridge, MA {cherian, sjain, tmarks, sullivan} @merl.com

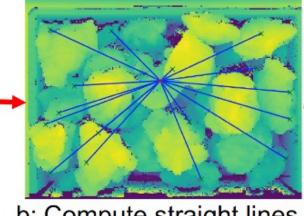
4. Discriminative 3D Shapes Using Depth Geodesics

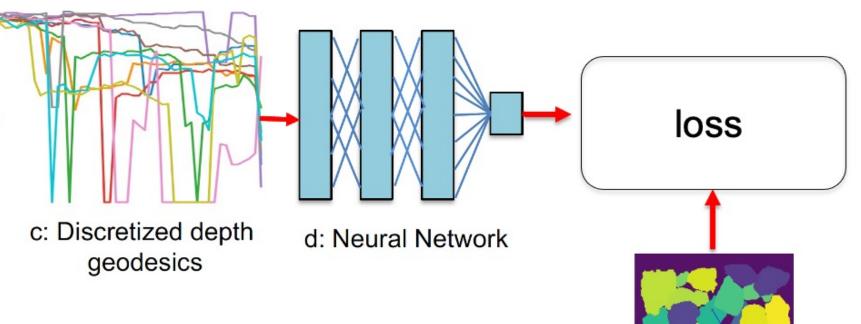


Key idea: Take any two points on the depth surface and draw a surface geodesic/curve between the points. Can we learn the subtilities in the geodesic as it traverses on the instance's surface to predict if its end-points belong to the same instance or multiple instances? We assume the 3D shape is approximately convex.

4a. Training Pipeline







b: Compute straight lines between point pairs

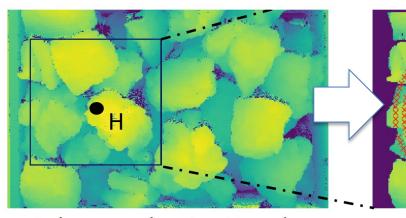
Key insights:

the depth image

1. The neural network discriminatively learns the 3D shape model from one-dimensional geodesics.

2. We may produce a very large training set of surface geodesics with very few instance annotations by considering all pairwise randomly selected points.

4b. Inference Pipeline



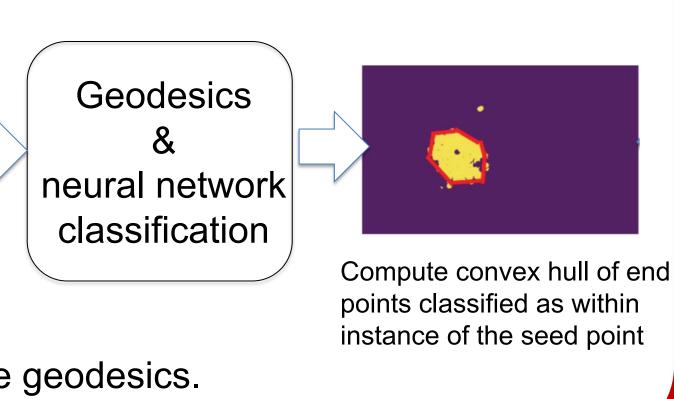
a: Select seed point H and define a region to segment

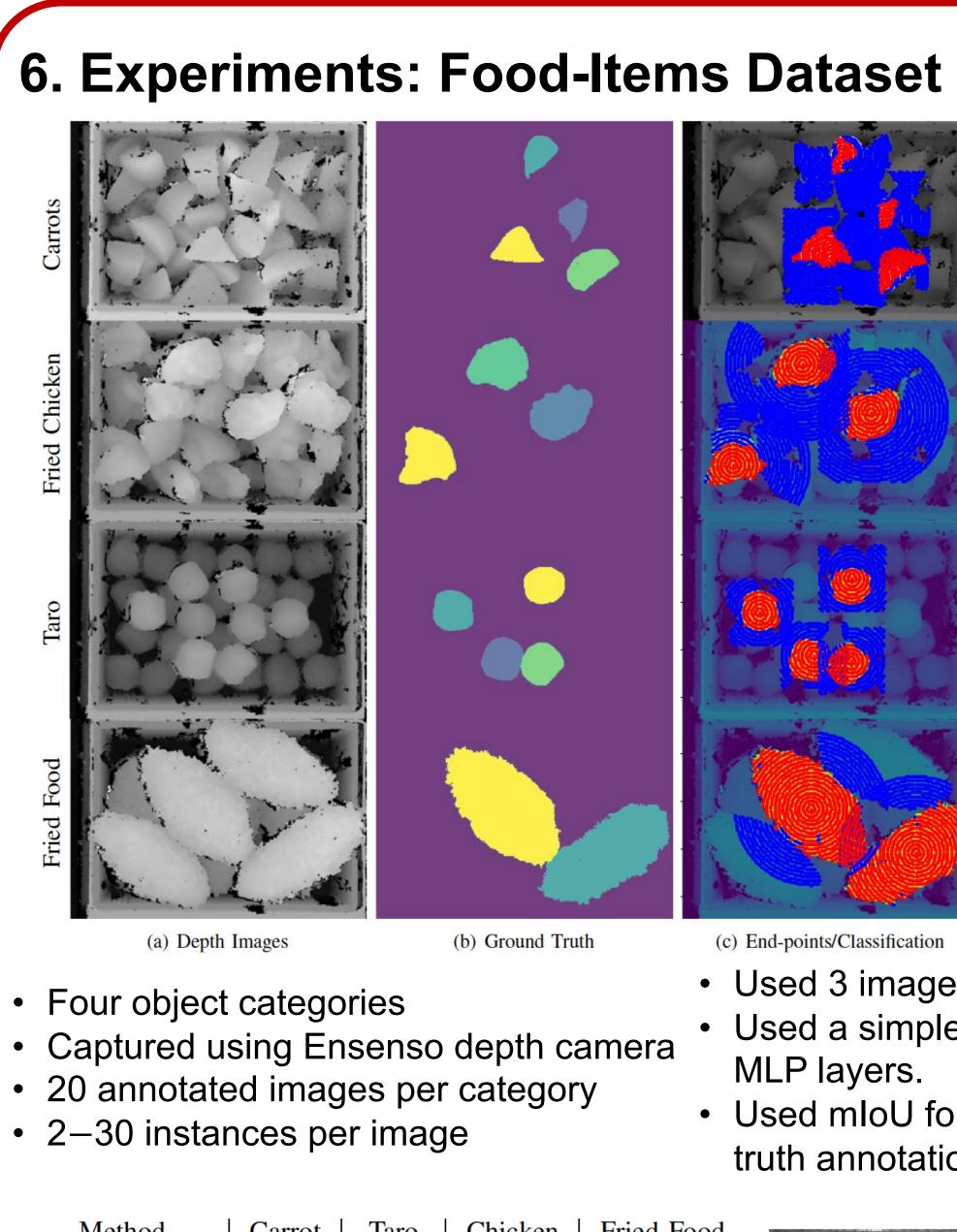
b: Compute geodesic end points

c: Compute lines between point pairs

We use the trained neural network for classifying the geodesics.

Few-shot annotations

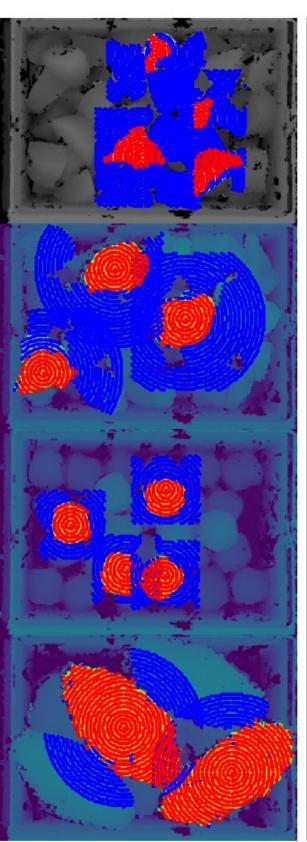




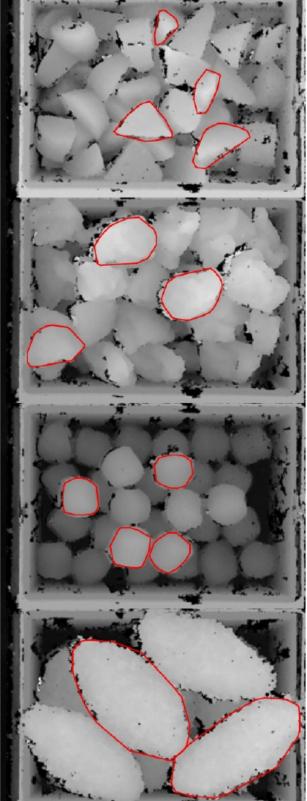
Method	Carrot	Taro	Chicken	Fried Food		
Ours	0.807	0.844	0.851	0.944		
KMeans	0.510	0.461	0.480	0.435		
GMM (full)	0.518	0.409	0.439	0.442		
GMM (diag)	0.459	0.446	0.466	0.578		
Spectral [39]	0.487	0.434	0.477	0.572		
Watershed [14]	0.687	0.339	0.585	0.862		
LCCP [29]	0.486	0.437	0.440	0.501		
SLIC [25]	0.420	0.357	0.370	0.429		
C2NO [26]	0.261	0.232	0.280	0.444		
Mask-RCNN	0.659	0.712	0.591	0.262		

mIoU comparisons against other methods.

Method	KMeans	Spectral	LCCP	MRCNN	Ours		
time (s)	0.082	0.324	0.059	1.59 (0.135)	0.170		
Time taken in seconds using a CPU (GPU)							



(c) End-points/Classification

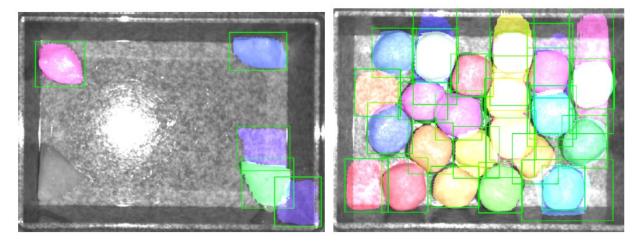


(d) Predicted Segments

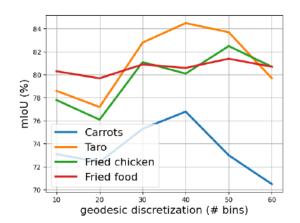
Used 3 images for training per category

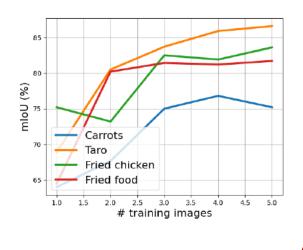
• Used a simple neural network with 5

MLP layers. Used mIoU for evaluation using ground truth annotations.



Results using Mask-RCNN (see false positives and over-segmentations?)





Depth discontinuity