

University of Illinois, Urbana-Champaign (UIUC)¹, Mitsubishi Electric Research Laboratories (MERL)² <u>https://sites.google.com/site/metrosmiles/research/research-projects/asmp</u>

Problem Statement

Mixed Audio (Bus + Background)

Separated Audio (Background)

We study the task of **visually-guided** audio source separation, i.e., given an audio mixture of multiple sound sources, the task is to separate it into its constituents using the available visual information.

Our

We leverage pseudo-3D scene geometry information encoded via scene-graphs and directionality of the object's motion to accomplish this.

Prior Work

- **Gao et al. (ICCV'19)**: Uses visual information but neither the visual context nor motion is leveraged for this task.
- **Zhao et al. (ICCV'19)**: They incorporate object motion, but the 3D nature of the scene is not exploited.
- **AVSGS (ICCV'21)**: Here the visual context of the object is incorporated into the visual representation, but the 3D geometry is not.

Learning Audio-Visual Dynamics Using Scene Graphs for Audio Source Separation Moitreya Chatterjee^{*1,2}, Narendra Ahuja¹, and Anoop Cherian^{* 2} **NEURAL INFORMATION PROCESSING SYSTEMS**

Audio Separation and Motion Prediction

Audio-Visual Scene Graphs

Visual Scene-Graph Representation

Light

We present a <u>2.5D geometry aware scene-</u> graph based approach for the task of visually guided audio source separation called Audio **Separator and Motion Predictor (ASMP)**. We predict the <u>direction of motion</u> of the sound source, aided by appropriate visual context, to derive additional supervision for

training our model.

Model Architecture and Losses

Acoustic Signal

Quantitative Study

Table 1: SDR, SIR, and SAR results on the ASIW and AVE test sets. [Key: Best, second-best results.]

Approach

Sound of Motion (SofM) [55] Cyclic Co-Learn [46] Co-Separation [13] AVSGS [8]

ASMP (only 2.5D graph) ASMP (2.5D graph + motion)

Direction Prediction

Cyclic Co-Learn [46]

Co-Separation [13]

Majority Vote

AVSGS [8]

ASMP (Ours)

Qualitative Study

Sound of Motion (SofM) [55]

> We explore the efficacy of geometry-aware visual representation and motion cues for the task of visually guided audio source separation. We propose a novel 2.5D scene-graph representation (ASMP) towards this end and train it using weakly-/self-supervised loses such as predicting the direction of motion. > We achieve state-of-the-art results on two challenging audio-visual datasets.

MC initiated that work at UIUC and completed it at MERL. MC was partially supported, and NA was fully supported by ONR under grant N00014- 20-1-2444, and USDA National Institute of Food and Agriculture under grant 2020-67021-32799/1024178. AC was fully supported by MERL.

Experimental Analysis

	ASIW		AVE		
$SDR\uparrow$	SIR ↑	SAR ↑	SDR ↑	SIR ↑	SAR \uparrow
6.7	9.4	11.1	4.1	9.2	7.6
7.0	13.4	12.4	4.2	9.7	8.4
6.6	12.9	12.6	3.9	9.3	7.8
8.8	14.1	13.0	5.8	10.4	8.2
9.0	14.3	13.7	6.5	12.4	8.9
9.6	14.5	14.1	7.2	13.3	9.4

Table 2: Direction Prediction results on the ASIW and AVE on test splits.

AS	IW	AVE		
-class (%)↑	28-class (%)↑	10-class (%)↑	28-class (%) ↑	
27.3	25.4	29.2	24.3	
29.6	27.0	31.2	30.6	
34.8	32.3	30.7	29.2	
32.2	31.7	30.2	28.0	
39.2	38.7	38.9	34.7	
42.5	41.3	38.5	36.8	

Conclusions

Acknowledgements