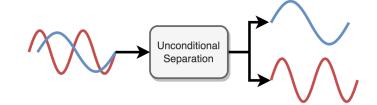
Heterogeneous target speech separation

<u>Efthymios Tzinis^{1,2,*}</u>, Gordon Wichern¹, Aswin Subramanian¹, Paris Smaragdis² and Jonathan Le Roux¹

¹Mitsubishi Electric Research Laboratories (MERL) ²University of Illinois at Urbana-Champaign

*Work done during an internship at MERL.

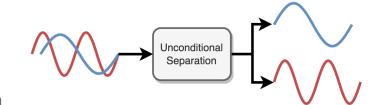


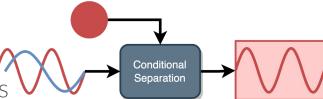
Efthymios Tzinis etzinis2@illinois.edu etzinis.com

Introduction

Audio source separation

- Co-occurence of multiple sounds
- Extract independent sound sources
 - All sources: Unconditional source separation
 - **Specify sources:** Conditional / Target source separation


Introduction

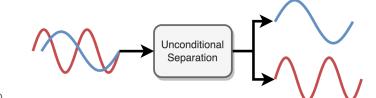

Audio source separation

- Co-occurence of multiple sounds
- Extract independent sound sources
 - All sources: Unconditional source separation
 - **Specify sources:** Conditional / Target source separation

Target speech separation

- Solves the disambiguation of the sources
- Solves the alignment of the estimated sources igvee

Introduction

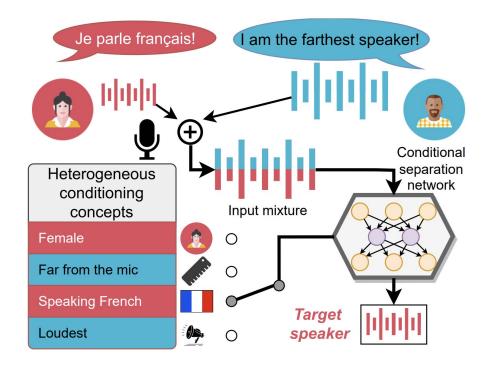

Audio source separation

- Co-occurence of multiple sounds
- Extract independent sound sources
 - All sources: Unconditional source separation
 - **Specify sources:** Conditional / Target source separation

Target speech separation

- Solves the disambiguation of the sources
- Solves the alignment of the estimated sources igvee

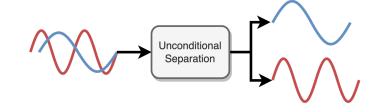
Conditional


Separation

Heterogeneous target separation

- Slicing an acoustic scene has multiple solutions
 - Based on user's intention
 - Multiple ways to describe the same target source

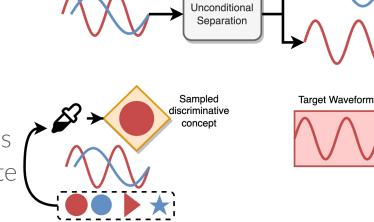
Heterogeneous target separation


- Slicing an acoustic scene has multiple solutions
 - Based on user's intention
 - Multiple ways to describe the same target source
- Isolate a speaker based on different semantic concepts
 - Gender
 - Distance from the microphone
 - Far/Near microphone
 - Language spoken
 - French, English, etc.
 - Energy of the speaker
 - Loudest / Less energetic

Heterogeneous training

Permutation invariant training (Oracle)

 Backpropagate the minimum loss under all permutations of the estimated speakers

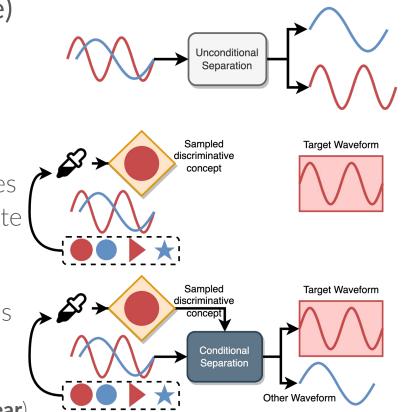

Heterogeneous training

Permutation invariant training (Oracle)

 Backpropagate the minimum loss under all permutations of the estimated speakers

Heterogeneous

- Generate a mixture from a set of sources
- Sample a discriminative concept to create the target waveform
 - Could contain more than one sources


Heterogeneous training

Permutation invariant training (Oracle)

 Backpropagate the minimum loss under all permutations of the estimated speakers

Heterogeneous

- Generate a mixture from a set of sources
- Sample a discriminative concept to create the target waveform
 - Could contain more than one sources
- Train the model under a targeted L1 loss
- Example conditions and their discriminative concepts:
 - Distance from the microphone: (Far or Near)
 - Language spoken: (**French**. **English**. etc.)

Introduced datasets

Generated three different datasets

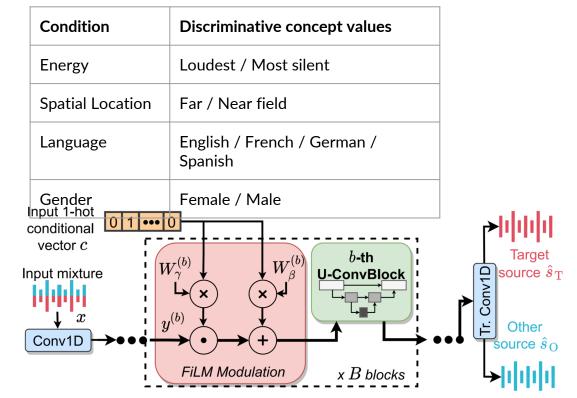
- Wall Street Journal (WSJ - anechoic)
- Energy (E), gender (G)
 Spatial LibriSpeech (SLIB - reverberant)
 - E, G, spatial location (S)
- Spatial VoxForge (SVOX - multi-lingual and reverberant):
 - E, S, language (L)

https://github.com/etzinis /heterogeneous_separatio

Metadata	WSJ	SLIB	SVOX
Conditions C	$\{\mathcal{E},\mathcal{G}\}$	$\{\mathcal{E},\mathcal{G},\mathcal{S}\}$	$\{\mathcal{E},\mathcal{L},\mathcal{S}\}$
Room height (m)	-	$\mathcal{U}[2.6, 3.5]$	$\mathcal{U}[2.75, 3.25]$
Room length (m)	-	$\mathcal{U}[9.0, 11.0]$	$\mathcal{U}[8.0, 10.0]$
Room width (m)	-	$\mathcal{U}[9.0, 11.0]$	$\mathcal{U}[8.0, 10.0]$
RT 60 (sec)	-	$\mathcal{U}[0.3, 0.6]^{\dagger}$	$\mathcal{U}[0.4, 0.6]$
Microphone location	-	Center	Center
Source height (m)	-	$\mathcal{U}[1.5, 2.0]$	$\mathcal{U}[1.6, 1.9]$
Far field distance (m)	-	$\mathcal{U}[1.7, 3.0]$	$\mathcal{U}[1.5, 2.5]$
Near field distance (m)	-	$\mathcal{U}[0.2, 0.6]$	$\mathcal{U}[0.3, 0.5]$
Number of test recordings	1,770	$2,\!620$	11,083
Number of test speakers	18	40	294
Number of train recordings	8,769	$132,\!553$	$124,\!937$
Number of train speakers	101	1172	2347
Number of val recordings	$3,\!557$	2,703	$10,\!244$
Number of val speakers	101	40	279

Conditional separation network

Conditional sudo rm -rf

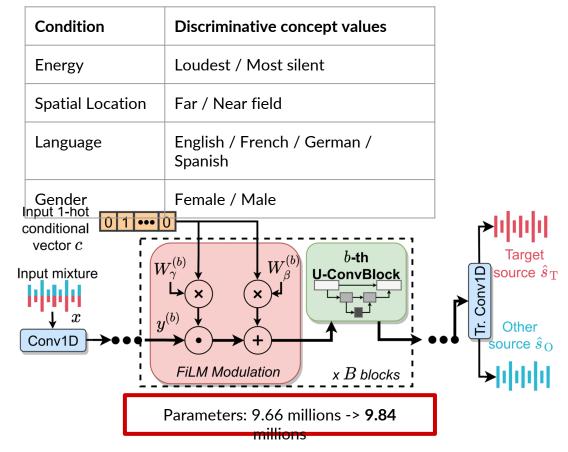

 One-hot conditioning vector based on all semantic concepts

Condition	Discriminative concept values
Energy	Loudest / Most silent
Spatial Location	Far / Near field
Language	English / French / German / Spanish
Gender	Female / Male

Conditional separation network

Conditional sudo rm -rf

- One-hot conditioning vector based on all semantic concepts
- FiLM modulation in the input of all B=16 U-ConvBlocks
- Always estimate the target and the non-target estimate



Conditional separation network

Conditional sudo rm -rf

- One-hot conditioning vector based on all semantic concepts
- FiLM modulation in the input of all B=16 U-ConvBlocks
- Always estimate the target and the nontarget estimate
- Low overhead

conditioning mechanism

Training and evaluation details

Training

- Sample a discriminative conception given a pre-defined prior
- L1 norm for both "target" and "other" estimated sources
 - We train for 120 epochs
 - 20,000 8kHz mixtures
 - Uniform [75-100]% overlap

ept	Condition	WSJ	SVOX	SLIB
d	Input-SNR	Uniform [-5,5]	Uniform [-2.5, 2.5]	R
u	Conditions	Energy, Gender	Energy, Gender, Spatial Loc.	Energy, Language, Spatial Loc.

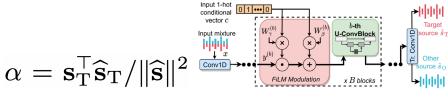
 $L_{\boldsymbol{\theta}} = |\widehat{\mathbf{s}}_{\mathrm{T}} - \mathbf{s}_{\mathrm{T}}| + |\widehat{\mathbf{s}}_{\mathrm{O}} - \mathbf{s}_{\mathrm{O}}| \ \widehat{\mathbf{s}}_{\mathrm{T}}, \widehat{\mathbf{s}}_{\mathrm{O}} = f(\mathbf{x}, \mathbf{c}; \boldsymbol{\theta})$

Input 1-hot
conditional
vector
$$c$$

Input mixture
 $y(b)$
 $y(b)$

Training and evaluation details

Training


- Sample a discriminative concept given a pre-defined prior
- L1 norm for both "target" and "other" estimated sources
 - We train for 120 epochs
 - 20,000 8kHz mixtures
 - Uniform [75-100]% overlap

Evaluation

- Scale-invariant signal to noise ratio on the target source
- 3,000 validation mixtures
- 5,000 test mixtures

)t	Condition	WSJ	SVOX	SLIB
	Input-SNR	Uniform [-5,5]	Uniform [-2.5, 2.5]	
	Conditions	Energy, Gender	Energy, Gender, Spatial Loc.	Energy, Language, Spatial Loc.

 $L_{\boldsymbol{\theta}} = |\widehat{\mathbf{s}}_{\mathrm{T}} - \mathbf{s}_{\mathrm{T}}| + |\widehat{\mathbf{s}}_{\mathrm{O}} - \mathbf{s}_{\mathrm{O}}| \ \widehat{\mathbf{s}}_{\mathrm{T}}, \widehat{\mathbf{s}}_{\mathrm{O}} = f(\mathbf{x}, \mathbf{c}; \boldsymbol{\theta})$

 $\mathrm{SI-SDR}(\widehat{\mathbf{s}}_{\mathrm{T}}, \mathbf{s}_{\mathrm{T}}) = -20 \log_{10} \left(\|\alpha \mathbf{s}_{\mathrm{T}}\| / \|\alpha \mathbf{s}_{\mathrm{T}} - \widehat{\mathbf{s}}_{\mathrm{T}}\| \right)$

Single-conditioned models > PIT

 Each model trained and evaluated on the corresponding condition

			Train	conditi	on prior	s (%)		Test cor	nditions	
Training			SL	ΙB	SV	OX	SL	IB	SVC	DX
method	$ \mathfrak{D} $	$ \mathscr{C} $	${\mathcal G}$	S	L	S	\mathcal{G}	S	L	S
Conditioned*	1	1	100	100	100	100	11.4	11.2	2.5	9.1
PIT (Oracle)*	1	1	100	100	100	100	11.0	10.7	4.6	7.5
In-domain heterogeneous	1	2	50	50	50	50	$\begin{array}{c} 10.9 \\ -0.6 \end{array}$	$\begin{array}{c} 10.7 \\ 6.2 \end{array}$	$\begin{array}{c} -0.5\\ 3.2 \end{array}$	$\begin{array}{c} 8.6 \\ 6.8 \end{array}$
PIT (Oracle)	1	2	50	50	50	50	$9.5\\5.2$	$\begin{array}{c} 8.9 \\ 4.5 \end{array}$	5.6 4.6	$\begin{array}{c} 6.8 \\ 5.6 \end{array}$
Cross-domain heterogeneous	2	2	25 50	50 25 50	25 50	$25 \\ 50 \\ 50$	$-1.4 \\ 9.9 \\ 10.1 \\ -0.5$	$9.2 \\ 9.9 \\ 8.9 \\ 8.4$	$4.3 \\ -0.7 \\ -0.9 \\ 4.3$	$8.2 \\ 9.0 \\ 9.0 \\ 6.8$
	2	3	25	25	25	25	8.9	8.7	4.4	7.8
PIT (Oracle)	2	3	25	25	25	25	8.0	7.3	5.5	6.5

Single-conditioned models > PIT

• Each model trained and evaluated on the corresponding condition

Heterogeneous training > PIT

- For all conditions except language
- For in-domain data

			Train	o conditi	on prior	s (%)		Test con	ditions	
Training			SL	/IB	SV	OX	SL	IB	SVO	DX
method	$ \mathfrak{D} $	$ \mathscr{C} $	\mathcal{G}	S	L	S	\mathcal{G}	S	L	S
Conditioned*	1	1	100	100	100	100	11.4	11.2	2.5	9.1
PIT (Oracle)*	1	1	100	100	100	100	11.0	10.7	4.6	7.5
In-domain heterogeneous	1	2	50	50	50	50	$10.9 \\ -0.6$	$\begin{array}{c} 10.7 \\ 6.2 \end{array}$	$\begin{array}{c} -0.5\\ 3.2\end{array}$	$\begin{array}{c} 8.6 \\ 6.8 \end{array}$
PIT (Oracle)	1	2	50	50	50	50	$9.5 \\ 5.2$	$\begin{array}{c} 8.9\\ 4.5\end{array}$	5.6 4.6	$\begin{array}{c} 6.8 \\ 5.6 \end{array}$
Cross-domain heterogeneous	2	2	$\begin{array}{c} 25\\ 50 \end{array}$	50 25 50	25 50	$25 \\ 50 \\ 50$	-1.4 9.9 10.1 -0.5	$9.2 \\ 9.9 \\ 8.9 \\ 8.4$	$\begin{array}{r} 4.3 \\ -0.7 \\ -0.9 \\ 4.3 \end{array}$	$8.2 \\ 9.0 \\ 9.0 \\ 6.8$
	2	3	25	25	25	25	8.9	8.7	4.4	7.8
PIT (Oracle)	2	3	25	25	25	25	8.0	7.3	5.5	6.5

Single-conditioned models > PIT

• Each model trained and evaluated on the corresponding condition

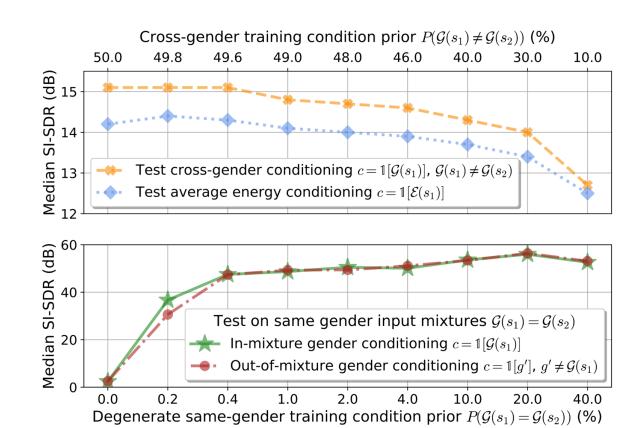
Heterogeneous training > PIT

- For all conditions except language
- For in-domain data

			Train	o conditi	on prior	s (%)		Test con	ditions	ditions	
Training			SL	JB	SV	OX	SL	IB	SVO	OX	
method	$ \mathfrak{D} $	$ \mathscr{C} $	\mathcal{G}	\mathcal{S}	L	S	\mathcal{G}	\mathcal{S}	L	S	
Conditioned*	1	1	100	100	100	100	11.4	11.2	2.5	9.1	
PIT (Oracle)*	1	1	100	100	100	100	11.0	10.7	4.6	7.5	
In-domain heterogeneous	1	2	50	50	50	50	$10.9 \\ -0.6$	$\begin{array}{c} 10.7 \\ 6.2 \end{array}$	$\begin{array}{c} -0.5\\ 3.2\end{array}$	$\begin{array}{c} 8.6 \\ 6.8 \end{array}$	
PIT (Oracle)	1	2	50	50	50	50	$9.5 \\ 5.2$	$\begin{array}{c} 8.9\\ 4.5\end{array}$	5.6 4.6	$\begin{array}{c} 6.8 \\ 5.6 \end{array}$	
Cross-domain heterogeneous	2	2	25 50	$50 \\ 25 \\ 50$	25 50	$25 \\ 50 \\ 50$	-1.4 9.9 10.1 -0.5	$ \begin{array}{r} 9.2 \\ 9.9 \\ 8.9 \\ 8.4 \end{array} $	$\begin{array}{r} 4.3 \\ -0.7 \\ -0.9 \\ 4.3 \end{array}$	8.2 9.0 9.0 6.8	
	2	3	25	25	25	25	8.9	8.7	4.4	7.8	
PIT (Oracle)	2	3	25	25	25	25	8.0	7.3	5.5	6.5	

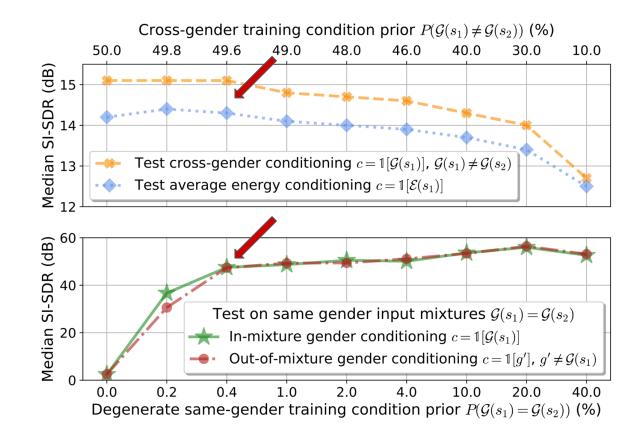
Single-conditioned models > PIT

• Each model trained and evaluated on the corresponding condition


Heterogeneous training > PIT

- For all conditions except language
- For in-domain data
- For **cross-domain** evaluation

			Trair	o conditi	on prior	s (%)		Test con	ditions	
Training			SL	ΙB	SV	OX	SL	IB	SVO	DX
method	$ \mathfrak{D} $	$ \mathscr{C} $	\mathcal{G}	S	L	S	\mathcal{G}	S	L	${\mathcal S}$
Conditioned*	1	1	100	100	100	100	11.4	11.2	2.5	9.1
PIT (Oracle)*	1	1	100	100	100	100	11.0	10.7	4.6	7.5
In-domain heterogeneous	1	2	50	50	50	50	$10.9 \\ -0.6$	$\begin{array}{c} 10.7 \\ 6.2 \end{array}$	$\begin{array}{c} -0.5\\ 3.2\end{array}$	$\begin{array}{c} 8.6 \\ 6.8 \end{array}$
PIT (Oracle)	1	2	50	50	50	50	9.5 5.2	$\begin{array}{c} 8.9\\ 4.5\end{array}$	5.6 4.6	$\begin{array}{c} 6.8\\ 5.6\end{array}$
Cross-domain heterogeneous	2	2	25 50	50 25 * 50	25 50	25 50 50	-1.4 9.9 10.1 -0.5	9.2 9.9 8.9 8.4	$\begin{array}{r} 4.3 \\ -0.7 \\ -0.9 \\ 4.3 \end{array}$	8.2 9.0 9.0 6.8
	2	3	25	25	25	25	8.9	8.7	4.4	7.8
PIT (Oracle)	2	3	25	25	25	25	8.0	7.3	5.5	6.5


Robustness under degenerate conditions

- Trade-off between
- the percentage of:
 - Same gender conditioning
 - Cross-gender

Robustness under degenerate conditions

- Trade-off between
- the percentage of:
 - Same gender conditioning
 - Cross-gender
- Optimal point for both gender and energy conditions
 - Using only 0.2-0.4% of same-gender mixtures
 - Also learns the degenerate case

Training method	Train o	conditio	on pri	ors (%)		Test conditions					
Training	WS	SJ	S	LIB	W	SJ	SLI	В			
	\mathcal{G}	ε	G	E	\mathcal{G}	ε	${\cal G}$	ε			
Proposed	25	25		50	13.3	12.4	7.1	8.8			

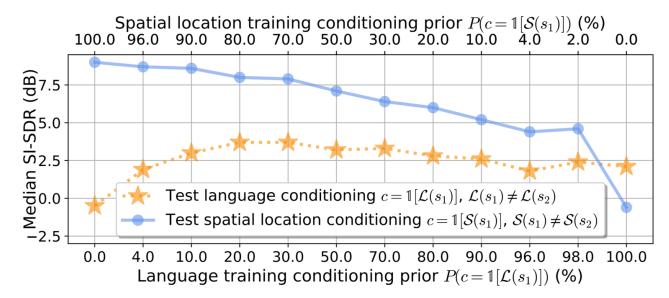
- No access to SLIB gender metadata about the speakers
- Learn using the energy concept as a "bridge" condition
 - Possible available metadata for the WSJ anechoic dataset

	Train	conditio	on prio	rs (%)		Test cond	litions		
Training	W	SJ	SL	JB	WS	SJ	SL	IB	
method	${\cal G}$	ε	G	E	\mathcal{G}	ε	G	ε	
Proposed	25	25	×	50	13.3	12.4	7.1	8.8	
(-) Bridge condition	50		×	50	14.5	7.4	5.5	9.2	(

- No access to SLIB gender metadata about the speakers
- Learn using the energy concept as a "bridge" condition
 - Possible available metadata for the WSJ anechoic dataset

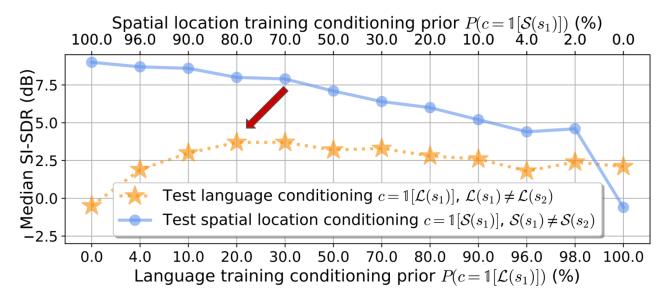
	Train	conditio	on prio	rs (%)		Test cond			
Training	W	SJ	SI	JB	WS	SJ	SL	IB	
method	${\mathcal G}$	ε	G	\mathbf{E}	${\cal G}$	E	${\cal G}$	ε	
Proposed	25	25	×	50	13.3	12.4	7.1	8.8	
(-) Bridge condition	50		×	50	14.5	7.4	5.5	9.2	
(-) Exclude amb. \mathcal{E} cases	25	25	×	50	13.0	11.8	6.2	8.4	

- No access to SLIB gender metadata about the speakers
- Learn using the energy concept as a "bridge" condition
 - Possible available metadata for the WSJ anechoic dataset


	Train	conditio	on prie	ors (%)		Test cond			
Training	WSJ		SLIB		WSJ		SL	IB	
method	\mathcal{G}	ε	G	E	\mathcal{G}	ε	G	ε	
Proposed	25	25	×	50	13.3	12.4	7.1	8.8	•
(-) Bridge condition	50		×	50	14.5	7.4	5.5	9.2	
(-) Exclude amb. \mathcal{E} cases	25	25	×	50	13.0	11.8	6.2	8.4	
(-) In-domain data	$\begin{array}{c} 100 \\ 50 \end{array}$	50	××		17.3 15.2	-2.4 14.3	$5.8\\4.2$	$-2.3 \\ 3.0$	

- No access to SLIB gender metadata about the speakers
- Learn using the energy concept as a "bridge" condition
 - Possible available metadata for the WSJ anechoic dataset

	Train condition priors (%)				Test conditions				
Training method	WSJ		SLIB		WSJ		SLIB		
	\mathcal{G}	ε	G	E	${\cal G}$	E	\mathcal{G}	ε	
Proposed	25	25	×	50	13.3	12.4	7.1	8.8	
(-) Bridge condition	50		×	50	14.5	7.4	5.5	9.2	
(-) Exclude amb. \mathcal{E} cases	25	25	×	50	13.0	11.8	6.2	8.4	
(-) In-domain data	$\begin{array}{c} 100\\ 50 \end{array}$	50	××		17.3 15.2	-2.4 14.3	$5.8\\4.2$	$-2.3 \\ 3.0$	
PIT (Oracle)*	100	100	100	100	17.3	13.6	10.9	10.2	
PIT (Oracle)	25	25	25	25	12.9	11.9	9.3	8.5	


- No access to SLIB gender metadata about the speakers
- Learn using the energy concept as a "bridge" condition
 - Possible available metadata for the WSJ anechoic dataset

Using a bridge semantic condition

- Learn a hard condition using an easier one
 - Learn how to condition on a specific **language** using the **spatial location**

Using a bridge semantic condition

Learn a hard condition using an easier one

- Learn how to condition on a specific **language** using the **spatial location**
- Best model for both conditions appears to be in between the two extremes
 - The training conditioning prior is key

Conclusions & Highlights

Heterogeneous target source separation

- A new paradigm in source separation
- Slicing acoustic scenes based on deviant:
 - Non-mutually exclusive signal characteristic conditions
 - One can also consider using **AND** and **OR** conditions

Conclusions & Highlights

Heterogeneous target source separation

- A new paradigm in source separation
- Slicing acoustic scenes based on deviant:
 - Non-mutually exclusive signal characteristic conditions
 - One can also consider using **AND** and **OR** conditions
- Heterogeneous condition training
 - Improves upon oracle permutation invariant training
 - Improves cross-domain **generalization**
 - **Robust** under degenerate cases

Conclusions & Highlights

Heterogeneous target source separation

- A new paradigm in source separation
- Slicing acoustic scenes based on deviant:
 - Non-mutually exclusive signal characteristic conditions
 - One can also consider using **AND** and **OR** conditions
- Heterogeneous condition training
 - Improves upon oracle permutation invariant training
 - Improves cross-domain **generalization**
 - **Robust** under degenerate cases
- In the future
 - We want to apply our method towards a **variable number of sources**
 - Make our method require **less supervision**
 - Extend out method to work with natural language queries

Thank you!

Any questions?

https://github.com/etzinis/heterogeneous_separation

Efthymios Tzinis etzinis2@illinois.edu etzinis.com