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Introduction
● Audio source separation

● Co-occurence of multiple sounds
● Extract independent sound sources

● All sources: Unconditional source separation
● Specify sources: Conditional / Target source separation
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Introduction
● Audio source separation

● Co-occurence of multiple sounds
● Extract independent sound sources

● All sources: Unconditional source separation
● Specify sources: Conditional / Target source separation

● Target speech separation
● Solves the disambiguation of the sources
● Solves the alignment of the estimated sources

3
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Introduction
● Audio source separation

● Co-occurence of multiple sounds
● Extract independent sound sources

● All sources: Unconditional source separation
● Specify sources: Conditional / Target source separation

● Target speech separation
● Solves the disambiguation of the sources
● Solves the alignment of the estimated sources

● What kind of conditional targets can we use?

4



U
 N

 I 
V 

E 
R 

S 
I T

 Y
   

O
 F

   
I L

 L
 I 

N
 O

 I 
S 

  A
 T

   
U

 R
 B

 A
 N

 A
 -

C
 H

 A
 M

 P
 A

 I 
G

 N

Heterogeneous target separation
● Slicing an acoustic scene has 

multiple solutions
● Based on user’s intention
● Multiple ways to describe the 

same target source

5
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Heterogeneous target separation
● Slicing an acoustic scene has 

multiple solutions
● Based on user’s intention
● Multiple ways to describe the 

same target source
● Isolate a speaker based on 

different semantic concepts
● Gender
● Distance from the microphone

● Far/Near microphone
● Language spoken

● French, English, etc.
● Energy of the speaker

● Loudest / Less energetic 6
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Heterogeneous training
● Permutation invariant training (Oracle)

● Backpropagate the minimum loss under 
all permutations of the estimated 
speakers 
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Heterogeneous training
● Permutation invariant training (Oracle)

● Backpropagate the minimum loss under 
all permutations of the estimated 
speakers 

● Heterogeneous 
● Generate a mixture from a set of sources
● Sample a discriminative concept to create 

the target waveform 
● Could contain more than one sources

8
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Heterogeneous training
● Permutation invariant training (Oracle)

● Backpropagate the minimum loss under 
all permutations of the estimated 
speakers 

● Heterogeneous 
● Generate a mixture from a set of sources
● Sample a discriminative concept to create 

the target waveform 
● Could contain more than one sources

● Train the model under a targeted L1 loss
● Example conditions and their 

discriminative concepts:
● Distance from the microphone: (Far or Near)
● Language spoken: (French, English, etc.)9
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Introduced datasets
● Generated three 

different datasets
● Wall Street Journal 

(WSJ - anechoic)
● Energy (E), gender (G)

● Spatial LibriSpeech 
(SLIB - reverberant)
● E, G, spatial location (S)

● Spatial VoxForge    
(SVOX - multi-lingual 
and reverberant):
● E, S, language (L)

1
0

https://github.com/etzinis
/heterogeneous_separatio
n

https://github.com/etzinis/heterogeneous_separation
https://github.com/etzinis/heterogeneous_separation
https://github.com/etzinis/heterogeneous_separation
https://github.com/etzinis/heterogeneous_separation
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Conditional separation network
● Conditional  sudo rm -rf

● One-hot conditioning 
vector based on all 
semantic concepts

1
1

Condition Discriminative concept values

Energy Loudest / Most silent

Spatial Location Far / Near field

Language English / French / German / 
Spanish

Gender Female / Male
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Conditional separation network
● Conditional  sudo rm -rf

● One-hot conditioning 
vector based on all 
semantic concepts

● FiLM modulation in the 
input of all B=16 U-
ConvBlocks

● Always estimate the 
target and the non-
target estimate

1
2

Condition Discriminative concept values

Energy Loudest / Most silent

Spatial Location Far / Near field

Language English / French / German / 
Spanish

Gender Female / Male
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Conditional separation network
● Conditional  sudo rm -rf

● One-hot conditioning 
vector based on all 
semantic concepts

● FiLM modulation in the 
input of all B=16 U-
ConvBlocks

● Always estimate the 
target and the non-
target estimate

● Low overhead 
conditioning mechanism

1
3

Parameters: 9.66 millions -> 9.84
millions

Condition Discriminative concept values

Energy Loudest / Most silent

Spatial Location Far / Near field

Language English / French / German / 
Spanish

Gender Female / Male
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Training and evaluation details
● Training

● Sample a discriminative concept 
given a pre-defined prior

● L1 norm for both “target” and 
“other” estimated sources
● We train for 120 epochs

● 20,000 8kHz mixtures
● Uniform [75-100]% overlap

1
4

Condition WSJ SVOX SLIB

Input-SNR Uniform
[-5,5]

Uniform
[-2.5, 2.5]

Conditions Energy, 
Gender

Energy,
Gender,

Spatial Loc.

Energy,
Language,
Spatial Loc.
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Training and evaluation details
● Training

● Sample a discriminative concept 
given a pre-defined prior

● L1 norm for both “target” and 
“other” estimated sources
● We train for 120 epochs

● 20,000 8kHz mixtures
● Uniform [75-100]% overlap

● Evaluation
● Scale-invariant signal to noise 

ratio on the target source
● 3,000 validation mixtures
● 5,000 test mixtures

1
5

Condition WSJ SVOX SLIB

Input-SNR Uniform
[-5,5]

Uniform
[-2.5, 2.5]

Conditions Energy, 
Gender

Energy,
Gender,

Spatial Loc.

Energy,
Language,
Spatial Loc.
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In- and cross-domain results
● Single-conditioned 

models > PIT
● Each model trained 

and evaluated on the 
corresponding 
condition

1
6
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In- and cross-domain results
● Single-conditioned 

models > PIT
● Each model trained 

and evaluated on the 
corresponding 
condition

● Heterogeneous 
training > PIT
● For all conditions 

except language
● For in-domain data

1
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In- and cross-domain results
● Single-conditioned 

models > PIT
● Each model trained 

and evaluated on the 
corresponding 
condition

● Heterogeneous 
training > PIT
● For all conditions 

except language
● For in-domain data

1
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In- and cross-domain results
● Single-conditioned 

models > PIT
● Each model trained 

and evaluated on the 
corresponding 
condition

● Heterogeneous 
training > PIT
● For all conditions 

except language
● For in-domain data
● For cross-domain

evaluation1
9
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Robustness under degenerate conditions
● Trade-off between 

the percentage of:
● Same gender 

conditioning
● Cross-gender

2
0
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Robustness under degenerate conditions
● Trade-off between 

the percentage of:
● Same gender 

conditioning
● Cross-gender

● Optimal point for 
both gender and 
energy conditions
● Using only 0.2-0.4% 

of same-gender 
mixtures

● Also learns the 
degenerate case2

1
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Bridge conditioning ablation

● Learn a harder discriminative concept (e.g. gender on SLIB)
● No access to SLIB gender metadata about the speakers
● Learn using the energy concept as a “bridge” condition

● Possible available metadata for the WSJ anechoic dataset
2
2
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Bridge conditioning ablation

● Learn a harder discriminative concept (e.g. gender on SLIB)
● No access to SLIB gender metadata about the speakers
● Learn using the energy concept as a “bridge” condition

● Possible available metadata for the WSJ anechoic dataset
2
3
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Bridge conditioning ablation

● Learn a harder discriminative concept (e.g. gender on SLIB)
● No access to SLIB gender metadata about the speakers
● Learn using the energy concept as a “bridge” condition

● Possible available metadata for the WSJ anechoic dataset
2
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Bridge conditioning ablation

● Learn a harder discriminative concept (e.g. gender on SLIB)
● No access to SLIB gender metadata about the speakers
● Learn using the energy concept as a “bridge” condition

● Possible available metadata for the WSJ anechoic dataset
2
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Bridge conditioning ablation

● Learn a harder discriminative concept (e.g. gender on SLIB)
● No access to SLIB gender metadata about the speakers
● Learn using the energy concept as a “bridge” condition

● Possible available metadata for the WSJ anechoic dataset
2
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Using a bridge semantic condition

● Learn a hard condition using an easier one
● Learn how to condition on a specific language using the spatial location

2
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Using a bridge semantic condition

● Learn a hard condition using an easier one
● Learn how to condition on a specific language using the spatial location
● Best model for both conditions appears to be in between the two 

extremes
● The training conditioning prior is key2

8
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Conclusions & Highlights
● Heterogeneous target source separation

● A new paradigm in source separation
● Slicing acoustic scenes based on deviant:

● Non-mutually exclusive signal characteristic conditions
● One can also consider using AND and OR conditions

2
9
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Conclusions & Highlights
● Heterogeneous target source separation

● A new paradigm in source separation
● Slicing acoustic scenes based on deviant:

● Non-mutually exclusive signal characteristic conditions
● One can also consider using AND and OR conditions

● Heterogeneous condition training
● Improves upon oracle permutation invariant training
● Improves cross-domain generalization
● Robust under degenerate cases

3
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Conclusions & Highlights
● Heterogeneous target source separation

● A new paradigm in source separation
● Slicing acoustic scenes based on deviant:

● Non-mutually exclusive signal characteristic conditions
● One can also consider using AND and OR conditions

● Heterogeneous condition training
● Improves upon oracle permutation invariant training
● Improves cross-domain generalization
● Robust under degenerate cases

● In the future
● We want to apply our method towards a variable number of sources
● Make our method require less supervision
● Extend out method to work with natural language queries3
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Efthymios Tzinis
etzinis2@illinois.edu
etzinis.com

Thank you!

Any questions?

https://github.com/etzinis/heterogeneous_separation

mailto:etzinis2@illinois.edu
https://etzinis.com
https://github.com/etzinis/heterogeneous_separation
https://github.com/etzinis/heterogeneous_separation
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