

An Empirical Analysis of Boosting Deep Networks

Sai Saketh Rambhatla¹, Michael Jones², Rama Chellappa^{1,3}

University of Maryland, College Park²Mitsubishi Electric Research Laboratories

³Johns Hopkins University

Goal: Compare accuracy of a boosted ensemble of Deep Neural Networks with the accuracy of a single large Deep Neural Network with same number of parameters.

Introduction

- Boosting is a method for finding a highly accurate hypothesis by linearly combining many ``weak" hypotheses, each of which may be only moderately accurate.
- Boosting can be applied to any classifier and AdaBoost has been proven to reduce the training error as more weak classifiers are added to the ensemble.
- Boosting was studied extensively with decision trees, and a large ensemble of decision trees has better performance than a single decision tree on the test set ("win").
- Missing in current literature: Analysis on whether an ensemble of MLPs or CNNs is a "win" in terms of decreasing the testing error below what is achievable with a single network with the same number of total parameters as in an ensemble.

Key Takeaway: Better off training a single large network than a boosted ensemble of small networks.

AdaBoost

• AdaBoost maintains a set of weights per training example. • On each round of boosting, the weight on each example is updated with a specific equation that gives less weight to examples the weak classifier got right and more weight to examples it got wrong. • The next weak classifier will be forced to classify more of the incorrect examples correctly. • For AdaBoost, at round t, the equation to update weights is $w_{i,t+1} = w_{i,t}e^{-\alpha_t m_i}/Z_t$

Datasets and Boosting algorithms

Datasets

• S

Boosting algorithms

Visit the paper for more information:

MNISTCIFAR-10	AdaBoostSAMME
• CIFAR-100	 LogitBoost
• SVHN	

Task: Classification **Metric**: Accuracy

Experiments

- For single model, only width (# of filters per layer) is increased to increase parameters (not depth).
- CNN experiments are run five times and the results are averaged
- Two different optimizers and three boosting algorithms were used – SGD and Adam

MLP

VGG-8

Key Takeaways

Decision Trees

• Single large Decision Trees overfit while the boosted ensemble

Neural Networks

• With same number of parameters, single CNN is better

