An Empirical Analysis of Boosting Deep Networks

Sai Saketh Ramabhatla1, Michael Jones2, Rama Chellappa1,3
1University of Maryland, College Park 2Mitsubishi Electric Research Laboratories 3Johns Hopkins University

Goal: Compare accuracy of a *boosted ensemble* of Deep Neural Networks with the accuracy of a *single* large Deep Neural Network with same number of parameters.

Introduction

- Boosting is a method for finding a highly accurate hypothesis by linearly combining many “weak” hypotheses, each of which may be only moderately accurate.
- Boosting can be applied to any classifier and AdaBoost has been proven to reduce the training error as more weak classifiers are added to the ensemble.
- Boosting was studied extensively with decision trees, and a large ensemble of decision trees has better performance than a single decision tree on the test set (“win”).
- **Missing in current literature:** Analysis on whether an ensemble of MLPs or CNNs is a “win” in terms of decreasing the testing error below what is achievable with a single network with the same number of total parameters as in an ensemble.

Key Takeaway: Better off training a *single* large network than a *boosted ensemble* of small networks.

AdaBoost

- AdaBoost maintains a set of weights per training example.
- On each round of boosting, the weight on each example is updated with a specific equation that gives less weight to examples the weak classifier got right and more weight to examples it got wrong.
- The next weak classifier will be forced to classify more of the incorrect examples correctly.
- For AdaBoost, at round \(t \), the equation to update weights is

\[
 w_{i,t+1} = w_{i,t} e^{-\alpha_i m_i / Z_t}
\]

Base Architectures

- **CNN**
 - LeNet style
 - 5954 trainable parameters
- **MLP**
 - Two hidden layers
 - 41088 trainable parameters
- Boosting a base classifier \(N \) rounds makes the total number of parameters \(N \times \) the number of parameters of the base classifier.
- For single model, only width (# of filters per layer) is increased to increase parameters (not depth).
- CNN experiments are run five times and the results are averaged
- Two different optimizers and three boosting algorithms were used – SGD and Adam

Datasets and Boosting algorithms

Datasets

- MNIST
- CIFAR-10
- CIFAR-100
- SVHN

Boosting algorithms

- AdaBoost
- SAMME
- LogitBoost

Task: Classification **Metric:** Accuracy

Experiments

Decision Trees

- Single large Decision Trees overfit while the boosted ensemble does better on all three datasets
- With the same number of leaves, ensemble is better than a **single large tree**

MLP

- Comparison of Boosted and Single MLP on CIFAR100 dataset
- Number of Parameters (x10^9)

CNN

- Comparison of Boosted and Single CNN on CIFAR10 dataset
- Test Accuracy

VGG-8

- Number of Parameters (x10^9)

Visit the paper for more information:

- Boosting is a method for finding a highly accurate hypothesis by linearly combining many “weak” hypotheses, each of which may be only moderately accurate.
- Boosting can be applied to any classifier and AdaBoost has been proven to reduce the training error as more weak classifiers are added to the ensemble.
- Boosting was studied extensively with decision trees, and a large ensemble of decision trees has better performance than a single decision tree on the test set (“win”).
- **Missing in current literature:** Analysis on whether an ensemble of MLPs or CNNs is a “win” in terms of decreasing the testing error below what is achievable with a single network with the same number of total parameters as in an ensemble.

Key Takeaways

- Single large Decision Trees overfit while the boosted ensemble does better on all three datasets
- With the same number of leaves, ensemble is better than a **single large tree**