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Introduction
• Deep neural networks (DNN) have been

widely used for photonic device design [1]– [10]
• The application has been exponentially growing

by 240% every year
• A generative model based on adversarial

conditional variatinal autoencoder (ACVAE)
can efficiently design nanophotonic device [4]

• However, hyperparameter selection requires great
amount of manual trial-and-error efforts

• We use automated machine learning (AutoML)
to optimize model hyperparameters [11]

Learning for Photonic Device
• Application of DNN to optical devices has

attracted much attention in the community
• The number of articles follows the Moore’s law
• The annual growth rate is 240%

Nanophotonic Power Splitter
• We consider to design compact nanophotonic

power splitter
• Silicon-on-insulator (SOI) platform
• Wideband wavelengths: 1450nm–1650nm
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Generative Adversarial CVAE
• Generative ACVAE model [4] with cycle

consistency [10] is used to optimize the splitter
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DNN Hyperparameters
• Selection of hyperperameters for DNN model is

cumbersome
• Huge search area: number of hidden layers/

nodes, activation functions, convolutional kernel
sizes/strides/dilations/channels, latent size,
adversarial coefficient, learning rates, etc.

• A large amount of manual efforts in
trial-and-error exploration is required to find best
hyperparameters
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AutoML Tuning
• We use AutoML framework called Optuna [11]
• AutoML automatically searches for good

hyperparameters
• Bayesian optimization (BO)-based efficient
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Early Pruning
• We use hyperband pruning
• Efficient search by discarding hopeless

hyperparameter candidates
• 80% cases are pruned to save optimization time
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Hyperparameter Exploration
• Explored over 10 hours on 6 GPUs

fANOVA Importance Score
• Hyperparameter importance score
• Major factors: Learning rate and activation

Performance
• AutoML found good model hyperparams
• Optimized model outperforms manual tuning
• It achieved quick and better learning
• Insertion loss of 0.1 dB is achieved
• ACVAE model takes just 20 seconds to

generate 250 good devices
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Conclusions
• We demonstrated that hyperparameter tuning of

a generative DNN model can be efficiently
automated and accelerated via AutoML
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