

Transformer-based Long-context End-to-end Speech Recognition

Takaaki Hori, Niko Moritz, Chiori Hori, Jonathan Le Roux

Interspeech 2020

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL) Cambridge, Massachusetts, USA <u>http://www.merl.com</u>

Introduction

- End-to-end ASR is becoming more widespread in the field
 - Enables to build ASR systems without expert knowledge
 - Achieves competitive or better performance than typical hybrid systems mainly by *Transformer*-based models
- Most end-to-end systems are basically designed to recognize independent utterances
- However, contextual information over multiple utterances, such as information on speaker or topic, is known to be useful for recognizing long audio recordings such as lecture and conversational speeches
- This work
 - Proposes a context-expanded Transformer that can utilize contextual information of audio and text features over multiple utterances
 - Reports substantial improvement of ASR accuracy for lecture and conversational speeches

Transformer-based ASR

- Transformer [Vaswani+'17]
 - Encoder-decoder-based sequence-tosequence model
 - Deep feed-forward architecture without recurrent connections
 - Exploits dependencies between all frames within a sentence via self/source-attention mechanisms
 - Applied to ASR [Dong+'18, Karita+'19(1)]
- Use CTC to promote monotonic alignment [Kim+'17, Hori+'17, Karita+'19(1)]
- Outperforms RNN-based models in major ASR tasks [Karita+'19(2)]
- Assumes per-utterance input/output

Context-expanded Transformer (proposed)

• Accepts speech and text segments including multiple consecutive utterances

4

Context-expanded Transformer (proposed)

- Accepts speech and text segments including multiple consecutive utterances
- Predicts an output sequence for the last utterance

$$\hat{Y}_u = \operatorname*{argmax}_{Y_u \in \mathcal{V}^*} p(Y_u | Y_{v:u-1}, X_{v:u})$$

- Gives position 0 to the beginning of the last utterance for positional encoding
- Applies self-attention encoder/decoder layers to the input segments
- Enables adaptation of the acoustic and language features using previous utterances at every encoder and decoder layer
 MERL

• Given the first utterance, it performs beam search decoding without any contextual information

• For the second utterance, it performs decoding as well, but the input segments include the previous utterance and hypothesis

Input utterances from long audio

7

• Repeats decoding in a sliding-window fashion with one-utterance shifts

• Repeats decoding in a sliding-window fashion with one-utterance shifts

Input utterances from long audio

The input speech/text segments are truncated if the segment length is greater than a threshold (Max Segment Length)

• Repeats decoding in a sliding-window fashion with one-utterance shifts

• Repeats decoding in a sliding-window fashion with one-utterance shifts

• Arrange each speech segment to include only utterances from the same speaker

• Arrange each speech segment to include only utterances from the same speaker

• Arrange each speech segment to include only utterances from the same speaker

• Also possible to arrange the text segment from the same speaker

• Also possible to arrange the text segment from the same speaker

Relation to prior work

- Acoustic context
 - Online speaker adaptation using i-vectors [Dehak+'10, Audhkhasi+'17], where each speaker i-vector is appended to every input frame or hidden vector in the encoder
- Language context
 - Hierarchical Recurrent Encoder Decoder (HRED) is applied to RNN-based end-to-end ASR, where a sentence-level state vector is fed to the decoder network [Kim+'18, Masumura+'19]
 - → Prior methods typically summarize the contextual information into a single vector, and the original information may not be preserved sufficiently
- Context-expanded Transformer (proposed)
 - Adapts each utterance using its previous utterances via self-attention mechanism without summarizing the utterances into a single vector
 - Expands the encoder and the decoder to exploit both acoustic and language contexts, with which the model parameters are optimized jointly
 - No additional parameters

Experiments

• Monologue and dialogue ASR benchmarks

dataset	language	type	hours	test sets
CSJ	ја	monologue	581	eval1 / eval2 / eval3
TED-LIUM3	en	monologue	452	dev / test
SWITCHBOARD	en	dialogue	260	(eval2000) callhm / swbd
HKUST	zh	dialogue	200	train_dev / dev

• Model architecture

- 12-layer encoder / 6-layer decoder
- Self-attention/source-attention had 256 dims. with 4-head attention
- Feed-forward layer had 2,048 hidden units
- Max Segment Length was 20 sec. by default
- 2-layer LSTM language model with 1,000 cells (used in CSJ, TED-LIUM3, and HKUST)

Monologue ASR results

	Speed		CSJ CERs [%	TED-LIUM3 WERs [%]		
	perturb.	eval1	eval2	eval3	dev	test
Baseline		6.0	4.2	4.7	11.9	8.7
+ i-vector		5.9	4.1	4.9	11.2	8.6
Proposed		5.5	3.8	4.0	10.5	8.1
ESPnet [Karita+'19 (2)]	~	5.7	4.1	4.5	9.7	8.0
Proposed	✓	5.3	3.6	3.8	9.2	7.5

- Proposed method provides substantial error reductions for both CSJ and TED-LIUM3, while i-vector provides very limited reductions.
- Relative error rate reduction ranges from 5 to 15%
- Performance gain is preserved even with speed perturbation, achieving SOTA performance

Dialogue ASR results

	context		SWITCHBOAR	D WERs [%]	HKUST CERs [%]	
	input	output	callhm	swbd	train_dev	dev
Baseline			17.7	8.9	23.9	23.6
+ i-vector	SD		17.8	8.8	-	-
ESPnet [Karita+'19 (2)]			18.1	9.0	-	23.5
Proposed	SI	SI	15.6	8.4	22.8	22.5
	SD	SI	15.4	8.2	22.5	22.1
	SD	SD	15.3	8.3	22.2	21.5

- The proposed method reduces recognition errors on SWITHBOARD and HKUST, where the SD context further reduces the errors especially for HKUST
- Relative error rate reduction ranges from 7 to 13.5 %

SI: Speaker-Independent SD: Speaker-Dependent

Max Segment Length vs. CER in CSJ and HKUST

- The error rate gradually decreases as the segment length increases.
- The error rate saturates with 20 sec. in HKUST, but it decreases further with 25 sec. in CSJ.

Contribution of input/output/LM contextual information

- Both input and output contexts are important.
- Training/decoding mismatch on input context degrades performance.

Conclusions

- Proposed an approach to end-to-end ASR for long audio recordings such as lecture and conversational speeches.
- The proposed context-expanded Transformer
 - Accepts multiple consecutive utterances at the same time and predicts an output sequence for the last utterance, and
 - Repeats decoding in a sliding-window fashion with one-utterance shifts to recognize an entire recording.
- Demonstrated the effectiveness of the approach using monologue and dialogue benchmarks, achieving 5-15% relative error reduction from utterance-based ASR baselines.
- Future work will include reduction of computational complexity and memory usage to utilize longer contextual information.

MITSUBISHI ELECTRIC Changes for the Better