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1. Introduction

* Physiological and Mental Status Monitoring
o Traditional method: electroencephalography (EEG) signal

o surface (non-invasive) or implanted (invasive) electrodes
o frequent calibration
o Non-EEG physiological biosignals: temperature, heart rate, and arterial oxygen, etc.
o wrist-worn platform
o more effective, comfortable, and less expensive
o Major issue: variability among different subjects or recording sessions

" Transfer Learning
o Cope with the change in data distributions, in order to fit a wider range of users
o Adversarial training
o allow the representation to predict dependent variables
o simultaneously taking advantage of an adaptive measure
o control the extent of its dependency during training
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1. Introduction

* Our work: adversarial inference approach

o Exploit disentangled nuisance-robust representations

o Trade-off between task-related features and person-discriminative information

o Additional censoring network blocks: Adversary block and Nuisance block
o jointly train the adversary, nuisance and classifier units
o task-discriminative features are incorporated for unknow users dissimilar from training data
o features from known subjects are projected to unknow but similar users’ data

o Proposed disentangled adversarial transfer learning is applicable to other deep learning network approaches
that are available
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2. Methods: Disentangled Adversarial Transfer Learning
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X; € RCEXT :raw data at trial i recorded from C dimensions for 7 time samples
y; € {0,1,...,L — 1}: label of user stress level status or task among L categories

s; € {1,...,S—1,S5}: subject identification (ID) among S individuals
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z = g(X; 0) : encoder, to learn the latent representation z from data X

Z : latent feature, concatenation of z, and z, on a ratio of (1-ry) : 7y
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3. Experimental Evaluation and Results: Physiological Biosignal Dataset

» Dataset: physiological biosignal dataset for assessing human stress status levels
o 4 stress status (L = 4):
(1). physical stress (i1). cognitive stress (ii1). emotional stress (iv). relaxation
o 20 healthy subjects (S = 20)
o 7 channels (C = 7): biosensors containing
(1). electrodermal activity (i1). temperature (ii1). heart rate (iv). arterial oxygen, (v-vii). acceleration

o 300 time samples (T = 300): task of 5 minutes downsampled to 1 Hz




3. Experimental Evaluation and Results: Experiment Implementation

= Parameters:
o known: channel number C = 7, time sample T = 300, label number L = 4, subject number S = 20

o to be optimized: adversary regularization weight A, and nuisance regularization weights Ay

o to be optimized: nuisance representation rate 7y among all features

» Parameter optimization:
o 1. first optimize A1, with only adversary block: A, € {0.05, 0.1} with Ay =0and ry=10

o 2. fix the nuisance rate to r = 0.2: assume that the subject-related feature zy accounts for a small
proportion among feature z and keeps constant for all users and tasks

o 3. second optimize Ay with both adversary and nuisance blocks: Ay € {0.001, 0.005, 0.05, 0.01, 0.2}
with ry = 0.2 and optimized A, from step 1

» Validation: cross-subjects validation using a leave-one-subject-out approach
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AA AN rn [/ Main Classifier dversary Network uisance Network

Non-Adversarial 0 0 0 79.88% 71.13% 6.17%

. 0.005 0 0 79.97% 35.62% 6.15%

Adversarial g

0.1 0 0 80.34% 8.08% 6.20%

0.1 0.001 0.2 80.62% 7.05% 39.03%

0.1 0.005 0.2 80.66 % 7.90% 55.54%

Disentangled Adversarial 0.1 0.05 0.2 80.04% 1.37% 78.83%

0.1 0.1 0.2 80.36% 8.08% 83.72%
01 02 02\  802% J\_ 805% J\_ 812% J

* Main classifier accuracy: 4-class decoding of human stress
o preferable: higher, indicates better discrimination of stress status levels

» Adversary network accuracy: 20-class decoding of subject ID
o preferable: lower, indicates less subject-specific information are preserved in feature z,

* Nuisance network accuracy: 20-class decoding of subject ID
o preferable: higher, indicates more subject-specific information are preserved in feature z,




3. Experimental Evaluation and Results: Results and Discussion

AA AN rny  Main Classifier Adversary Network  Nuisance Network

Non-Adversarial 0 0 0 79.88% | 71.13% 6.17%
. 0.005 0 0 79.97% 35.62% 6.15%

Adversarial . — t ,

0.1 0 0 80.34% | - 8.08% 6.20% |

0.1 0001 02 80.62% 7.05% 39.03%

(01 0005 0.2 80.66 % | [ 7.90% 55.54% |

Disentangled Adversarial 0.1 0.05 0.2 80.04% 1.37% 78.83%
0.1 0.1 02 80.36% 8.08% 83.72%

0.1 02 0.2 80.22% 8.05% 87.26%

* Non-adversarial model: A, =0, A, =0,ry=0
» Adversarial network: A, =0.1, Ay =0,ry=0

» Disentangled adversarial network: A, = 0.1, A = 0.005, ry=0.2
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Thank you.




