End-to-End Multi-speaker Speech Recognition with Transformer

Xuankai Chang1, Wangyou Zhang2,
Yanmin Qian2, Jonathan LeRoux3, Shinji Watanabe1
1Center for Language and Speech Processing, Johns Hopkins University, USA
2SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
3Mitsubishi Electric Research Laboratories (MERL), USA
• Multi-speaker speech processing (Cocktail party problem)
End-to-End is attractive

✓ No need for parallel clean audios
End-to-End is attractive

- No need for parallel clean audios
- Simplifying the complicated model-building
End-to-End is attractive

- No need for parallel clean audios
- Simplifying the complicated model-building
- Natural incorporation with Linguistic Information
End-to-End speech recognition

Single-input, Single-output

Neural Network
[Graves+ 2014]

“ICASSP is interesting.”

Multi-input, Single-output

Neural Network
[Ochiai+ 2017]

“ICASSP is interesting.”
End-to-End speech recognition

Single-input, Single-output

Neural Network
[Graves+ 2014]

“ICASSP is interesting.”

Multi-input, Single-output

Neural Network
[Ochiai+ 2017]

“ICASSP is interesting.”
End-to-End speech recognition

Single-input, Multi-output

Neural Network
[Seci+ 2018]

“ICASSP is interesting.”

“Virtual conference is fresh.”

Multi-input, Multi-output

Neural Network
[Chang+ 2019]

“ICASSP is interesting.”

“Virtual conference is fresh.”
End-to-End speech recognition

Single-input, Multi-output
Neural Network
[Seki+ 2018]

“ICASSP is interesting.”
“Virtual conference is fresh.”

Multi-input, Multi-output
Neural Network
[Chang+ 2019]

“ICASSP is interesting.”
“Virtual conference is fresh.”
End-to-End speech recognition

Single-input, Multi-output

Bi-LSTM

“ICASSP is interesting.”

“Virtual conference is fresh.”

Multi-input, Multi-output

Bi-LSTM

“ICASSP is interesting.”

“Virtual conference is fresh.”
End-to-End speech recognition

Transformer

Single-input, Multi-output

Transformer

“ICASSP is interesting.”

“Virtual conference is fresh.”

Multi-input, Multi-output

Transformer

“ICASSP is interesting.”

“Virtual conference is fresh.”
Single-Channel Multi-Speaker E2E ASR

1. **Encoder**: separating and encoding as high dimensional representation
2. **Decoder**: generating the output token sequence
3. **CTC**: determining the permutation of reference sequences

Hiroshi Seki, et al. “A purely end-to-end system for multi-speaker speech recognition”, ACL, 2018
Single-Channel Multi-Speaker E2E ASR

1. **Encoder**: separating and encoding as high dimensional representation
2. **Decoder**: generating the output token sequence
3. **CTC**: determining the permutation of reference sequences

Hiroshi Seki, et al. “A purely end-to-end system for multi-speaker speech recognition”, ACL, 2018
1. **Speech separation**: Multi-source mask-based neural beamformer
2. **Feature extraction**: STFT \rightarrow Log Mel-filterbank
3. **Speech recognition**: Joint CTC/attention-based encoder-decoder

Multi-Channel Multi-Speaker ASR

1. Speech separation: Multi-source mask-based neural beamformer
2. Feature extraction: STFT → Log Mel-filterbank
3. Speech recognition: Joint CTC/attention-based encoder-decoder

Transformer (Self-attention)

- Self-attention

 ![Diagram of Transformer (Self-attention)]

 - Linear Projection (Q)
 - Linear Projection (K)
 - Linear Projection (V)
 - Weighted Summation
 - Attention Output
 - Queries
 - Keys
 - Values
 - Hidden State
Transformer (Self-attention)

- Self-attention

Encoder

CTC

Attention Decoder

Self-attention

Hidden State

Linear Projection (Q)

Linear Projection (K)

Linear Projection (V)

Weighted Summation

Attention Output

Queries

Keys

Values
Transformer (Self-attention)

- Time-restricted Self-attention
Transformer (Self-attention)

- Time-restricted Self-attention

Self-attention

Linear Projection (Q)

Linear Projection (K)

Linear Projection (V)

Hidden State

Attention Output

Weighted Summation

Masking Network

Beam-forming

\{X\}^C_{c=1}

Queries

Keys

Values

Sliding window (30 frames: 14 on the left, 15 on the right)
Experiment – Data

<table>
<thead>
<tr>
<th>Data</th>
<th>Name</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-channel single-speaker</td>
<td>WSJ</td>
<td>-</td>
</tr>
<tr>
<td>Single-channel multi-speaker</td>
<td>wsj1-2mix [1]</td>
<td>-</td>
</tr>
<tr>
<td>Multi-channel multi-speaker</td>
<td>Spatialized wsj1-2mix¹</td>
<td>Train: 98.5 hr</td>
</tr>
<tr>
<td></td>
<td>2 versions:</td>
<td>Dev: 1.3 hr</td>
</tr>
<tr>
<td></td>
<td>• Anechoic</td>
<td>Eval: 0.8 hr</td>
</tr>
<tr>
<td></td>
<td>• Reverberant</td>
<td></td>
</tr>
</tbody>
</table>

¹ The spatialization toolkit is available at http://www.merl.com/demos/deep-clustering/spatialize_wsj0-mix.zip

Results – Single-channel multi-speaker

- Anechoic
 - 1st Channel

- Reverberant
 - Nara-WPE preprocessing
 - 1st Channel

![Graph showing WER for Anechoic and Reverberated conditions with 1st Channel results.](image)
Results – Single-channel multi-speaker

- Anechoic
 - 1st Channel

- Reverberant
 - Nara-WPE preprocessing
 - 1st Channel
• Anechoic
 • 1st Channel
• Reverberant
 • Nara-WPE preprocessing
 • 1st Channel
1. Include original WSJ (single-channel single speaker)
 • Bypassing the frontend
 • Helps regularize training
 • Improves backend ASR performance
 • Benefits frontend performance

2. Curriculum Learning
 • In the order of balanced \rightarrow unbalanced energy between the sources
 1) balanced means both streams in the frontend can be trained.
 2) unbalanced samples to refine one of the streams.
Results – Multi-channel multi-speaker

- **Anechoic**
 - Dev WER: 8.6, 10.7, 13.5
 - Eval WER: 6.9, 6.4

- **Reverberant**
 - Dev WER: 30.0, 33.0, 35.0
 - Eval WER: 28.0, 26.0
Results – Multi-channel multi-speaker

• Anechoic

- Eval WER: RNN-Frontend + RNN-Backend: 11.8, RNN-Frontend + Transformer-Backend: 6.9, Transformer-Frontend + Transformer-Backend: 6.4

• Reverberant

- Dev WER: RNN-Frontend + RNN-Backend: 35.0, RNN-Frontend + Transformer-Backend: 31.9, Transformer-Frontend + Transformer-Backend: 28.0
- Eval WER: RNN-Frontend + RNN-Backend: 33.0, RNN-Frontend + Transformer-Backend: 30.0, Transformer-Frontend + Transformer-Backend: 26.0

Anechoic setting: 13.2% WER decrease compared to Reverberant setting.
Results – Multi-channel

With external dereverberation (WPE)

<table>
<thead>
<tr>
<th></th>
<th>Dev (Dereverberated)</th>
<th>Eval (Dereverberated)</th>
<th>Dev (Reverberant)</th>
<th>Eval (Reverberant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNN-Frontend + RNN-Backend</td>
<td>35.0</td>
<td>33.0</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td>RNN-Frontend + Transformer-Backend</td>
<td>30.0</td>
<td>28.0</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>Transformer-Frontend + Transformer-Backend</td>
<td>24.5</td>
<td>19.2</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.7</td>
<td>15.2</td>
<td>15.5</td>
<td></td>
</tr>
</tbody>
</table>
Results – Multi-channel

- With external dereverberation (WPE)

![Graph showing results with and without dereverberation for different models.](image)
Speech Separation Ability

Multi-channel multi-speaker end-to-end ASR

Speech separation and enhancement

Feature extractor

Speech recognition

Overlapped Segment

Separated Segment 1

Separated Segment 2

Masking Network

Beamforming

X

Log Mel-filterbank

Log Mel-filterbank

Encoder

Encoder

CTC

CTC

L_{ctc}

L_{att}
Conclusion

- Transformer based multi-speaker end-to-end ASR
 - Single-channel
 - Multi-channel
 - Backend ASR: encoder & decoder
 - Frontend masking network: local self-attention
 - First to apply self-attention in speech separation.

- Future work
 - To improve the performance of the model with Transformer frontend
 - To integrate dereverberation in the system
 - To apply the model on real data
Thanks!

Q & A

• Special thanks to my co-authors:

Wangyou Zhang

Yanmin Qian

Jonathan Le Roux

Shinji Watanabe