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Background

• Multi-speaker speech processing (Cocktail party problem)
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End-to-End speech recognition
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End-to-End speech recognition

Transformer
“ICASSP is interesting.”

“Virtual conference is fresh.”
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Single-Channel Multi-Speaker E2E ASR
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Single-channel multi-speaker end-to-end ASR

Back Propagation

Hiroshi Seki, et al. “A purely end-to-end system for multi-speaker speech recognition”, ACL, 2018
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1. Encoder: separating and encoding as high dimensional representation
2. Decoder: generating the output token sequence
3. CTC : determining the permutation of reference sequences
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Multi-Channel Multi-Speaker ASR

Multi-channel multi-speaker end-to-end ASR

Speech separation and enhancement
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1. Speech separation: Multi-source mask-based neural beamformer
2. Feature extraction: STFT → Log Mel-filterbank
3. Speech recognition: Joint CTC/attention-based encoder-decoder

Back Propagation

Xuankai Chang, et al. “MIMO-Speech: End-to-end multi-channel multi-speaker speech recognition”, ASRU, 2019
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Data Name Note
Single-channel single-speaker WSJ -
Single-channel multi-speaker wsj1-2mix [1] -

Multi-channel multi-speaker
Spatialized wsj1-2mix1

2 versions:
• Anechoic
• Reverberant

Train: 98.5 hr
Dev: 1.3 hr
Eval: 0.8 hr

Experiment – Data

[1] Hiroshi Seki, et al. “A purely end-to-end system for multi-speaker speech recognition”, ACL, 2018

1 The spatialization toolkit is available at http://www.merl.com/demos/deep-clustering/spatialize_wsj0-mix.zip



• Anechoic
• 1st Channel

Results – Single-channel multi-speaker
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• Nara-WPE preprocessing
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1. Include original WSJ (single-channel single speaker)
• Bypassing the frontend
• Helps regularize training

• Improves backend ASR performance
• Benefits frontend performance

2. Curriculum Learning
• In the order of balanced → unbalanced energy between the sources

1) balanced means both streams in the frontend can be trained.
2) unbalanced samples to refine one of the streams.

Data Scheduling in Multi-channel Training

Masking Network

Beamforming

X X

Feature Extract

Encoder

Attention
DecoderCTC

X
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Results – Multi-channel
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• Transformer based multi-speaker end-to-end ASR

 Single-channel

Multi-channel
 Backend ASR: encoder & decoder

 Frontend masking network: local self-attention

First to apply self-attention in speech separation.

• Future work

 To improve the performance of the model with Transformer frontend

 To integrate dereverberation in the system

 To apply the model on real data

Conclusion



Thanks!
Q & A

• Special thanks to my co-authors:

Shinji WatanabeJonathan Le Roux

Yanmin QianWangyou Zhang
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