

End-to-End Multi-speaker Speech Recognition with Transformer

Xuankai Chang¹, Wangyou Zhang², Yanmin Qian², Jonathan LeRoux³, Shinji Watanabe¹ ¹Center for Language and Speech Processing, Johns Hopkins University, USA ²SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, China ³Mitsubishi Electric Research Laboratories (MERL), USA

• Multi-speaker speech processing (Cocktail party problem)

End-to-End is attractive

 \checkmark

No need for parallel clean audios

End-to-End is attractive

 \checkmark

 \checkmark

No need for parallel clean audios

Simplifying the complicated model-building

End-to-End is attractive

No need for parallel clean audios

Simplifying the complicated model-building

✓ Natural incorporation with Linguistic Information

Single-Channel Multi-Speaker E2E ASR

- 1. Encoder: separating and encoding as high dimensional representation
- 2. Decoder: generating the output token sequence
- **3. CTC** : determining the permutation of reference sequences

Hiroshi Seki, et al. "A purely end-to-end system for multi-speaker speech recognition", ACL, 2018

Single-Channel Multi-Speaker E2E ASR

- 1. Encoder: separating and encoding as high dimensional representation
- 2. Decoder: generating the output token sequence
- **3. CTC** : determining the permutation of reference sequences

Hiroshi Seki, et al. "A purely end-to-end system for multi-speaker speech recognition", ACL, 2018

Multi-Channel Multi-Speaker ASR

Back Propagation

- 1. Speech separation: Multi-source mask-based neural beamformer
- **2.** Feature extraction: $STFT \rightarrow Log$ Mel-filterbank
- 3. Speech recognition: Joint CTC/attention-based encoder-decoder

Xuankai Chang, et al. "MIMO-Speech: End-to-end multi-channel multi-speaker speech recognition", ASRU, 2019

Multi-Channel Multi-Speaker ASR

Back Propagation

- 1. Speech separation: Multi-source mask-based neural beamformer
- **2.** Feature extraction: $STFT \rightarrow Log$ Mel-filterbank
- 3. Speech recognition: Joint CTC/attention-based encoder-decoder

Xuankai Chang, et al. "MIMO-Speech: End-to-end multi-channel multi-speaker speech recognition", ASRU, 2019

Data	Name	Note
Single-channel single-speaker	WSJ	-
Single-channel multi-speaker	wsj1-2mix [1]	-
Multi-channel multi-speaker	Spatialized wsj1-2mix ¹ 2 versions: • Anechoic • Reverberant	Train: 98.5 hr Dev: 1.3 hr Eval: 0.8 hr

[1] Hiroshi Seki, et al. "A purely end-to-end system for multi-speaker speech recognition", ACL, 2018

¹The spatialization toolkit is available at http://www.merl.com/demos/deep-clustering/spatialize_wsj0-mix.zip

Results – Single-channel multi-speaker

Results – Single-channel multi-speaker

Results – Single-channel multi-speaker

Data Scheduling in Multi-channel Training

- 1. Include original WSJ (single-channel single speaker)
 - Bypassing the frontend
 - Helps regularize training
 - Improves backend ASR performance
 - Benefits frontend performance
- 2. Curriculum Learning
 - In the order of **balanced** \rightarrow **unbalanced** energy between the sources
 - 1) **balanced** means both streams in the frontend can be trained.
 - 2) unbalanced samples to refine one of the streams.

Results – Multi-channel multi-speaker

- RNN-Frontend + RNN-Backend
- RNN-Frontend + Transformer-Backend
- Transformer-Frontend + Transformer-Backend

Results – Multi-channel multi-speaker

- RNN-Frontend + RNN-Backend
- RNN-Frontend + Transformer-Backend
- Transformer-Frontend + Transformer-Backend

Results – Multi-channel

□ With external dereverberation (WPE)

Results – Multi-channel

□ With external dereverberation (WPE)

Speech Separation Ability

- Transformer based multi-speaker end-to-end ASR
 - □ Single-channel
 - Multi-channel
 - □ Backend ASR: encoder & decoder
 - □ Frontend masking network: local self-attention
 - □ First to apply **self-attention** in **speech separation**.
- Future work
 - □ To improve the performance of the model with Transformer frontend
 - □ To integrate dereverberation in the system
 - $\hfill\square$ To apply the model on real data

Thanks! Q&A

• Special thanks to my co-authors:

Wangyou Zhang

Jonathan Le Roux

Yanmin Qian

Shinji Watanabe