

WHAMR!: Noisy and Reverberant Single-Channel Speech Separation

Matthew Maciejewski^{1,2}, Gordon Wichern¹, Emmett McQuinn³, Jonathan Le Roux¹

¹Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA ²Johns Hopkins University, Baltimore, MD, USA ³whisper.ai, San Francisco, CA, USA

May 6, 2020

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL) Cambridge, Massachusetts, USA <u>http://www.merl.com</u>

This work was performed while M. Maciejewski was an intern at MERL.

What is speech separation?

• Producing multiple single-speaker recordings from a recording of overlapped speech

Why WHAMR!?

Why WHAMR!?

Why WHAMR!?

Pre-Existing MERL Datasets

wsj0-2mix

- Mixtures of WSJ0 corpus recordings (studio read speech)
- Standard corpus used in speech separation

WHAM!

(WSJ0 Hipster Ambient Mixtures)

- wsj0-2mix augmented with noise recorded from real environments in San Francisco
 - Noises recorded in coffee shops, restaurants, and bars

WHAMR! Dataset

- WHAM! augmented with synthetic reverberation
 - Room impulse responses generated using image-source method
 - Room parameters randomly generated to roughly match noise recordings

• Includes all combinations of sources, noise, and reverberation

WHAMR! Core Conditions

Separation/Enhancement Methods

- Paired transforms between waveform and a timefrequency spectral domain
- Spectral mask is produced which suppresses interfering sources or noise/reverberation

Evaluated Model Configurations

Feature Transformations:

- Short-Time Fourier Transform (STFT)
- TasNet-style sliding-window learned basis projection

Internal Mask Production Architecture:

- Temporal Convolutional Network (TCN)
- Bi-directional Long Short-Term Memory (BLSTM)

All methods were trained with scale-invariant signal-to-distortions ratio (SI-SDR) loss.

SI-SDR of Core Separation Conditions using Single Model

	Input			Conv-TasNet		TasNet-BLSTM	
	Noise	Reverb	Input	Output	Δ	Output	Δ
			0.0	12.9	12.9	14.2	14.2
l 🗐 😨	\checkmark		-4.5	7.0	11.5	7.5	12.0
		\checkmark	-3.3	4.3	7.6	5.6	8.9
l @ 😳 🤯	\checkmark	\checkmark	-6.1	2.2	8.3	3.0	9.2

Cascaded Systems

Cascaded Systems

- Pre-train separate models for each subtask
 - Separation with noisy/reverberant targets
 - Enhancement of overlapping speech
- Cascade models together

SI-SDR of Enhancement of Overlapping Speech

Net		Denoise		Dereverb	
Feature	Processor	Output	Δ	Output	Δ
Learned Learned STFT STFT	TCN BLSTM TCN BLSTM	$ \begin{array}{c c} 10.8 \\ 11.2 \\ 8.4 \\ 9.5 \end{array} $	9.6 10.1 7.2 8.4	$7.2 \\ 8.5 \\ 4.0 \\ 5.9$	3.2 4.4 0.0 1.8
Input SI-SDR:		1.2		4.0	
					ļ

Cascaded Systems

• Chain appropriately-trained models together, with rescale factor:

$$\beta(\hat{s}|x) = \frac{\langle x, \hat{s} \rangle}{\|\hat{s}\|^2}$$

- Scale so residual is orthogonal to estimated source
- Necessary due to scale-invariant loss.

SI-SDR of Noisy Separation with Cascaded Models

System				
Pre-Enh. Separate Speech		SI-SDK		
Removes while Removing		Output	Δ	
×	noise	7.5	12.0	
noise	—	8.1	12.6	
Input SI-SDR:		-4.5		

SI-SDR of Reverberant Separation with Cascaded Models

	Pre-Enh. Removes	Separate Speech while Removing	Post-Enh. Removes	Δ	
	×	rev.	×	5.6	8.9
	rev.	_	×	6.4	9.7
	×	_	rev.	6.6	9.9
-		Input SI-SDR:		-3.5	3

SI-SDR of Noisy and Reverberant Separation with Cascaded Models

Pre-Enh.	Separate speech	Post-Enh.			
Removes while removing		Removes	Output	Δ	
×	noise, rev.	×	3.0	9.2	
noise	rev.	×	3.5	9.7	
noise, rev.	—	×	3.6	9.7	
rev.	noise	×	3.7	9.8	
×	noise	rev.	3.7	9.8	
noise	—	rev.	4.0	10.1	
	Input SI-SDR:		-6.1		

Tuned Cascaded Systems

• Additional training epochs of full end-to-end system

SI-SDR of Tuned Cascaded Systems

	Input			Best Sy w/o Tu	vstem ining	Tune	Tuned	
	Noise	Reverb	Input	Output	Δ	Output	Δ	
() () () () () () () () () () () () () (<u>,</u>		$\begin{vmatrix} 0.0 \\ -4.5 \end{vmatrix}$	14.2	$14.2 \\ 12.6$	- 8.3	_ 12 9	
	↓	\checkmark	$\begin{vmatrix} 1.0 \\ -3.3 \\ -6.1 \end{vmatrix}$	6.6 4.0	9.9 10.1	7.0 4.7	12.9 10.3 10.8	

Conclusions

- We introduced a new speech separation dataset featuring added noise and reverberation.
- Systems with learned basis features and BLSTM processing outperform systems with STFT features and TCN processing.
- Splitting separation into subtasks of pre-separation denoising, reverberant separation, and post-separation dereverberation improves performance.

Data and creation scripts available at: http://wham.whisper.ai/

MITSUBISHI ELECTRIC Changes for the Better