

Streaming Automatic Speech Recognition with the Transformer Model

Niko Moritz, Takaaki Hori, Jonathan Le Roux

ICASSP May, 2020

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL) Cambridge, Massachusetts, USA <u>http://www.merl.com</u>

© MERL

Motivation

- End-to-end automatic speech recognition (ASR) has greatly simplified the pipeline for building and applying ASR systems.
- Offline end-to-end ASR systems have shown to surpass the performance of traditional hybrid DNN-HMM solutions.
- Streaming end-to-end architectures are still lacking behind this success.
- Encoder-decoder based architectures have demonstrated to achieve the best end-to-end ASR results but are difficult to apply in a streaming fashion.

This work

- Our proposed triggered attention (TA) concept is used to overcome these difficulties.
- The TA concept is applied to the transformer architecture, achieving SOTA streaming endto-end ASR results.

Outline

- Encoder-Decoder Neural Networks
 - Attention
 - Transformer
 - Self-attention
 - Time-Restricted Self-Attention
 - Streaming Encoder-Decoder Attention (prior work)
- Triggered Attention
 - Architecture
 - Frame-Synchronous Decoding Algorithm
- LibriSpeech Results

Embedding/Feature vector:

© MERL

E=12

D=6

Output sequence:

MITSUBISHI Changes for the Better Streaming Encoder-Decoder Attention (prior work)

Adaptive Chunking based on Selection Probability

[1] C. Chiu and C. Raffel, "Monotonic chunkwise attention," in Proc. ICLR, Apr. 2018.

Example:

- Monotonic Chunkwise Attention (MoChA) [1]

Problems:

- Backpropagation with discrete decisions is not possible.
- No frame-synchronous decoding algorithm.
- Detecting word or word-piece positions is a good part of the ASR job that defines insertion and deletion errors.

N. Moritz, T. Hori, and J. Le Roux, "Triggered attention for end-to-end speech recognition," in Proc. ICASSP, May 2019, pp. 5666–5670.

Frame-synchronous CTC prefix beam search [1]:

 $\ell_1 = (\ll_P \approx \ell(\texttt{soles}), \texttt{the}) \approx \ell(\texttt{soles}), \texttt{th}) \approx \ell(\texttt{soles}), \texttt{the}) \approx \ell(\texttt{soles}), \texttt{the}) \approx \ell(\texttt{soles}), \texttt{the}) \approx \ell(\texttt{soles}), \texttt{th}) \approx \ell(\texttt{s$

 $\ell_7 = (\langle sos \rangle, Hey, Word, World)$ $\ell_8 = (\langle sos \rangle, Hello, World)$

Set of prefix sequences after pruning:

 $\Omega \cong \{ \mathcal{H}_{\mathcal{H}} \}$

[1] A. L. Maas, A. Y. Hannun, D. Jurafsky, and A. Y. Ng, "Firstpass large vocabulary continuous speech recognition using bidirectional recurrent DNNs," arXiv preprint arXiv:1408.2873, 2014.

C MERL

Frame-synchronous one-pass TA decoding [1]:

$$\log p_{\text{joint}}(\ell | X_{1:n}^{E}) = \lambda \log p_{\text{prfx}}(\ell | X_{1:n}^{E}) + (1 - \lambda) \log p_{\text{ta}}(\ell | X_{1:\nu}^{E}) + \alpha \log p_{\text{LM}}(\ell) + \beta |\ell|$$

[1] N. Moritz, T. Hori, and J. Le Roux, "Streaming end-to-end speech recognition with joint CTC-attention based models," in Proc. ASRU, Dec. 2019, pp. 936–943.

© MERL

Encoder	Full-sequence CTC-attention decoding [1,2]					
	Cle	ean	Other			
	Dev	Test	Dev	Test		
Full-sequence	2.4	2.7	6.0	6.1		

٦	ime-restricted encoder	Frame-synchronous CTC prefix beam search				TA: $arepsilon^{dec}=$ 18, delay: $arepsilon^{dec}\cdot$ 40 ms = 720 ms				
		Clean		Other		Clean		Other		
ε^{er}	^c / delay*	Dev	Test	Dev	Test	Dev	Test	Dev	Test	
0	/ 30 ms	3.3	3.7	9.4	9.4	2.9	3.2	8.1	8.0	_
1	/ 510 ms	3.0	3.3	8.4	8.6	2.8	3.0	7.5	7.8	1.23 seconds
2	/ 990 ms	2.9	3.1	8.0	8.2	2.7	2.9	7.3	7.4	
3	/ 1470 ms	2.8	2.9	7.8	8.1	2.7	2.8	7.1	7.2	
Ful	l-sequence	2.5	2.8	6.9	7.0	2.4	2.6	6.1	6.3	_

* Algorithmic encoder delay: $E \cdot \varepsilon^{enc} \cdot \text{frame}-\text{rate} + \text{CNN}-\text{delay}$

E = 12, frame-rate = 40 ms, CNN-delay = 30 ms

S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, "Hybrid CTC/attention architecture for end-to-end speech recognition," J. Sel. Topics Signal Processing, vol. 11, no. 8, pp. 1240–1253, 2017.
S. Karita, N. Yalta, S. Watanabe, M. Delcroix, A. Ogawa, and T. Nakatani, "Improving transformer-based end-to-end speech recognition with connectionist temporal classification and language model integration," in Proc. ISCA Interspeech, Sep. 2019, pp. 1408–1412.

- The triggered attention (TA) concept enables frame-synchronous decoding with an encoder-decoder based model for the first time.
- The TA concept enables joint scoring of an CTC and attention-based decoder model in a streaming fashion.
- The proposed system achieves state-of-the-art results for streaming end-to-end ASR on the LibriSpeech corpus.

MITSUBISHI ELECTRIC Changes for the Better