

Learning To Separate Sounds From Weakly Labeled Scenes

Fatemeh Pishdadian, Gordon Wichern, Jonathan Le Roux

ICASSP 2020

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL) Cambridge, Massachusetts, USA <u>http://www.merl.com</u>

Single-channel Audio source separation

• Isolating individual sounds in a complex auditory scene

A common approach: time-frequency mask inference

A common approach: time-frequency mask inference

A common approach: time-frequency mask inference

Mixture (Time-frequency)

Time

A common approach: time-frequency mask inference

A common approach: time-frequency mask inference

Training targets Estimated sources (isolated sources) Mixture spectrogram Separator Require time-frequency labels \rightarrow computed from large datasets of isolated sound sources

Strongly supervised source separation

Strongly supervised source separation

- Deep learning methods
 - Good performance in speech/music source separation
 - Require time-frequency labels → computed from large datasets of isolated sound sources
- Obtaining isolated sound sources
 - Expensive
 - Require complicated recording setups
 - Not practical in some situations \rightarrow difficult to record sounds in isolation e.g., isolating natural sounds or the sound of a machine part when the machine is running

Strongly supervised source separation

• Deep learning methods

- Good performance in speech/music source separation

Obtaining isolated sound sources

- Expensive
- Require complicated recording setups
- Not practical in some situations \rightarrow difficult to record sounds in isolation e.g., isolating natural sounds or the sound of a machine part when the machine is running

Our approach

- Train a source separation system with labels that are easier to collect in realistic conditions, e.g., information on each source's activity over time
- Predicting such information is typically the goal of a **Sound Event Detection (SED)** system \rightarrow we hope to use such a system as a bridge

Sound event detection

- Sound Event Detection (SED) system
 - Predicts start and end time of each event
 - Classifies event into predefined categories
- $\circ~$ Typical SED system
 - 1. Feature extraction
 - 2. Classification

Frame-level weakly supervised source separation

Frame-level weakly supervised source separation

Frame-level weakly supervised source separation

- Training Objective: A pre-trained SED classifier should find only a single source at correct times in the estimated source spectrogram
- Only time periods when sources are active required for training, not isolated sources

Clip-level weakly supervised source separation

- Training Objective: A pre-trained sound event detection classifier should find only a single source in the estimated source spectrogram
- Only information on presence or absence of sources within a clip is required for training, not isolated sources

• Classification loss for mixture frame : T

$$\mathcal{L}_{\text{f-class}}(\boldsymbol{X},\tau) = \sum_{i=1}^{n} W_{i,\tau} H(l_{i,\tau}, p_{i,\tau}(\boldsymbol{X}))$$
cross-entropy loss function
$$H(l,p) = -l\log(p) - (1-l)\log(1-p)$$

• Classification loss for mixture frame : T

$$\mathcal{L}_{\text{f-class}}(\boldsymbol{X},\tau) = \sum_{i=1}^{n} W_{i,\tau} H(l_{i,\tau}, p_{i,\tau}(\boldsymbol{X}))$$
cross-entropy loss function
$$H(l,p) = -l\log(p) - (1-l)\log(1-p)$$

• Class activity priors:

$$W_{i,\tau} = \begin{cases} \gamma_i^{-1} & i \in \mathcal{A}_{\tau}, \\ (1-\gamma_i)^{-1} & i \notin \mathcal{A}_{\tau}, \end{cases}$$

• Classification loss for mixture frame : T

$$\mathcal{L}_{\text{f-class}}(\boldsymbol{X},\tau) = \sum_{i=1}^{n} W_{i,\tau} H(l_{i,\tau}, p_{i,\tau}(\boldsymbol{X}))$$
cross-entropy loss function
$$H(l,p) = -l\log(p) - (1-l)\log(1-p)$$

• Class activity priors:

$$W_{i,\tau} = \begin{cases} \gamma_i^{-1} & i \in \mathcal{A}_{\tau}, \\ (1-\gamma_i)^{-1} & i \notin \mathcal{A}_{\tau}, \end{cases}$$
 prior probability for the activation of the i-th source

• Classification loss for mixture frame $\,:\, {\cal T}\,$

$$\mathcal{L}_{\text{f-class}}(\boldsymbol{X}, \tau) = \sum_{i=1}^{n} W_{i,\tau} H(l_{i,\tau}, p_{i,\tau}(\boldsymbol{X}))$$
cross-entropy loss function
$$H(l, p) = -l \log(p) - (1 - l) \log(1 - p)$$

• Class activity priors:

Using the classification loss to train the separator

• Classification loss for the i-th estimated source at frame $\,:\,\, {\cal T}$

$$\mathcal{L}_{\text{f-class}}(\hat{\boldsymbol{S}}_i,\tau) = W_{i,\tau}H(l_{i,\tau},p_{i,\tau}(\hat{\boldsymbol{S}}_i)) + \sum_{j\neq i} W_{j,\tau}H(0,p_{j,\tau}(\hat{\boldsymbol{S}}_i))$$

Using the classification loss to train the separator

• Classification loss for the i-th estimated source at frame $\,:\,\,\mathcal{T}$

$$\mathcal{L}_{\text{f-class}}(\hat{\boldsymbol{S}}_{i},\tau) = W_{i,\tau}H(l_{i,\tau},p_{i,\tau}(\hat{\boldsymbol{S}}_{i})) + \sum_{j\neq i} W_{j,\tau}H(0,p_{j,\tau}(\hat{\boldsymbol{S}}_{i}))$$

$$\text{activity of the i-th} \\ \text{source should match the} \\ \text{frame labels}$$

Using the classification loss to train the separator

• Classification loss for the i-th estimated source at frame $~:~~ \mathcal{T}$

Joint separation-classification objective

• Training with only the classification loss → the separator network only needs to isolate the TF features necessary for classification, not signal reconstruction

Joint separation-classification objective

- Training with only the classification loss → the separator network only needs to isolate the TF features necessary for classification, not signal reconstruction
- Adding a mixture loss forces the separator to produce masks that reconstruct sources.

$$\mathcal{L}_{\min}(\tau) = \sum_{\omega} \left| X_{\omega,\tau} - \sum_{i \in \mathcal{A}_{\tau}} \hat{S}_{i,\omega,\tau} \right| + \sum_{\omega} \sum_{i \notin \mathcal{A}_{\tau}} \left| \hat{S}_{i,\omega,\tau} \right|$$

Joint separation-classification objective

- Training with only the classification loss → the separator network only needs to isolate the TF features necessary for classification, not signal reconstruction
- Adding a mixture loss forces the separator to produce masks that reconstruct sources.

$$\mathcal{L}_{\min}(\tau) = \sum_{\omega} \left| X_{\omega,\tau} - \sum_{i \in \mathcal{A}_{\tau}} \hat{S}_{i,\omega,\tau} \right| + \sum_{\omega} \sum_{i \notin \mathcal{A}_{\tau}} \left| \hat{S}_{i,\omega,\tau} \right|$$

• Total loss for separation training: weighted sum of classification and mixture loss

$$\mathcal{L}_{\rm f} = \sum_{\tau,i} \mathcal{L}_{\rm f-class}(\hat{\boldsymbol{S}}_i, \tau) + \alpha \sum_{\tau} \mathcal{L}_{\rm mix}(\tau)$$

Network architecture

Separation Network

\circ Dataset

- Urbansound8K: short excerpts of field recordings
- Selected classes: car horn, dog bark, gun shot, jackhammer, siren
- Audio mixtures:
 - Length: 4-sec
 - Sampling rate: 16 kHz
 - Each mixture includes at least 1 sound event
- Training/validation/test: 20K, 5K, 5K samples

Number of sources	Per-frame distribution	Per-clip distribution
0	0.17	0.00
1	0.28	0.06
2	0.30	0.20
3	0.18	0.34
4	0.06	0.30
5	0.01	0.10

\circ Dataset

- Urbansound8K: short excerpts of field recordings
- Selected classes: car horn, dog bark, gun shot, jackhammer, siren
- Audio mixtures:
 - Length: 4-sec
 - Sampling rate: 16 kHz
 - Each mixture includes at least 1 sound event
- Training/validation/test: 20K, 5K, 5K samples

Number of sources	Per-frame distribution	Per-clip distribution
0	0.17	0.00
1	0.28	0.06
2	0.30	0.20
3	0.18	0.34
4	0.06	0.30
5	0.01	0.10

\circ Dataset

- Urbansound8K: short excerpts of field recordings
- Selected classes: car horn, dog bark, gun shot, jackhammer, siren
- Audio mixtures:
 - Length: 4-sec
 - Sampling rate: 16 kHz
 - Each mixture includes at least 1 sound event
- Training/validation/test: 20K, 5K, 5K samples

Number of sources	Per-frame distribution	Per-clip distribution
0	0.17	0.00
1	0.28	0.06
2	0.30	0.20
3	0.18	0.34
4	0.06	0.30
5	0.01	0.10

- Training
 - Classifier trained **only** on mixtures (may include isolated cases)
 - Classifier weights **fixed** when training the separator
 - If trained jointly from scratch, the two networks co-adapt, resulting in degradation of separation performance.
- Evaluation measures
 - Separation: scale-invariant source to distortion ratio (SI-SDR)

Results

- Siren is the most difficult class in our dataset →
 contains a more diverse set of sounds (e.g., police siren vs. ambulance siren)
- Distributions of weakly supervised results are very close to strongly supervised results except at the very high SI-SDR range

	Car horn	Dog bark	Gun shot	Jackhammer	Siren	Overall
Input SI-SDR	-5.8 ± 5.1	-5.4 ± 4.8	-5.5 ± 4.4	-2.9 ± 4.8	-3.0 ± 4.6	-4.5 ± 4.9
Δ SI-SDR-clip	6.5 ± 6.1	6.4 ± 4.4	8.8 ± 5.5	4.6 ± 3.8	1.8 ± 6.7	5.6 ± 5.9
Δ SI-SDR-frame	7.0 ± 7.4	8.3 ± 5.6	9.7 ± 5.4	5.7 ± 4.2	3.1 ± 6.4	6.8 ± 6.3
Δ SI-SDR-strong	9.9 ± 10.1	10.0 ± 7.1	12.5 ± 8.0	7.8 ± 6.6	4.9 ± 8.9	9.0 ± 8.6

Audio examples

<u>Mixture</u>

Separated Car Horn

Separated Dog Bark

Separated Jackhammer

1))

))

Future directions

- Extension to other types of masking, e.g., phase sensitive masking
- Considering unlabeled sounds from other classes in addition to labeled sounds
- Training on datasets with fine-grained labels, e.g., bird songs of different species
- Exploring application of this technique to speech and/or music

MITSUBISHI ELECTRIC Changes for the Better