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Single-channel Audio source separation

• Isolating individual sounds in a complex auditory scene

Source 1

Source 2

Source 3

Mixture

Source 
Separation

+

+
=

Estimate 1

Estimate 2

Estimate 3

2



© MERL

Masking-based audio source separation

 A common approach: time-frequency mask inference
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Strongly supervised source separation
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o Deep learning methods 

 Good performance in speech/music source separation

 Require time-frequency labels  computed from large datasets of isolated sound sources

o Obtaining isolated sound sources  

 Expensive

 Require complicated recording setups

 Not practical in some situations  difficult to record sounds in isolation e.g., isolating natural sounds or 

the sound of a machine part when the machine is running 

Strongly supervised source separation
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Our approach

• Train a source separation system with labels that are easier to collect in realistic conditions, e.g., 

information on each source’s activity over time

• Predicting such information is typically the goal of a Sound Event Detection (SED) system 

we hope to use such a system as a bridge
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Sound event detection

o Sound Event Detection (SED) system

 Predicts start and end time of each event

 Classifies event into predefined categories

o Typical SED system

1. Feature extraction

2. Classification

SED System
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Frame-level weakly supervised source separation
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Frame-level weakly supervised source separation
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Frame-level weakly supervised source separation
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• Training Objective: A pre-trained SED classifier should find only a single source at correct times in the estimated source spectrogram

• Only time periods when sources are active required for training, not isolated sources
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Clip-level weakly supervised source separation
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• Training Objective: A pre-trained sound event detection classifier should find only a single source in the estimated source spectrogram

• Only information on presence or absence of sources within a clip is required for training, not isolated sources
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Classification objective
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• Classification loss for mixture frame    :

cross-entropy loss function
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Classification objective
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• Classification loss for mixture frame    :

• Class activity priors:

set of active source 
indices at frame 𝜏𝜏

prior probability for 
the activation of the i-
th source

cross-entropy loss function
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Using the classification loss to train the separator
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• Classification loss for the i-th estimated source at frame     :
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Using the classification loss to train the separator
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• Classification loss for the i-th estimated source at frame     :
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Using the classification loss to train the separator

all sources except 
the i-th source 
should be inactive
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• Classification loss for the i-th estimated source at frame     :

activity of the i-th
source should match the 
frame labels
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Joint separation-classification objective

• Training with only the classification loss  the separator network only needs to isolate the TF features necessary for 

classification, not signal reconstruction 
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• Training with only the classification loss  the separator network only needs to isolate the TF features necessary for 

classification, not signal reconstruction 

• Adding a mixture loss forces the separator to produce masks that reconstruct sources.

• Total loss for separation training: weighted sum of classification and mixture loss
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Joint separation-classification objective
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Network architecture
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Network architecture
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Network architecture
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Separation Network Classification Network

max-pooling layer  for estimating clip-level activities
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o Dataset

 Urbansound8K: short excerpts of field recordings

 Selected classes: car horn, dog bark, gun shot, jackhammer, siren

 Audio mixtures: 
• Length: 4-sec 
• Sampling rate: 16 kHz
• Each mixture includes at least 1 sound event

 Training/validation/test: 20K, 5K, 5K samples

Experiments
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Per-frame 
distribution

Per-clip 
distribution

0 0.17 0.00
1 0.28 0.06
2 0.30 0.20
3 0.18 0.34
4 0.06 0.30
5 0.01 0.10
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o Training 

 Classifier trained only on mixtures (may include isolated cases)

 Classifier weights fixed when training the separator  

 If trained jointly from scratch, the two networks co-adapt, resulting in degradation of separation 

performance.

o Evaluation measures

 Separation: scale-invariant source to distortion ratio (SI-SDR)

Experiments
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Results
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strong labels
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Car horn Dog bark Gun shot Jackhammer Siren Overall

Input SI-SDR −5.8 ± 5.1 −5.4 ± 4.8 −5.5 ± 4.4 −2.9 ± 4.8 −3.0 ± 4.6 −4.5 ± 4.9

∆SI-SDR-clip 6.5 ± 6.1 6.4 ± 4.4 8.8 ± 5.5 4.6 ± 3.8 1.8 ± 6.7 5.6 ± 5.9

∆SI-SDR-frame 7.0 ± 7.4 8.3 ± 5.6 9.7 ± 5.4 5.7 ± 4.2 3.1 ± 6.4 6.8 ± 6.3

∆SI-SDR-strong 9.9 ± 10.1 10.0 ± 7.1 12.5 ± 8.0 7.8 ± 6.6 4.9 ± 8.9 9.0 ± 8.6
17

Results

 Siren is the most difficult class in our dataset 

contains a more diverse set of sounds (e.g., police 

siren vs. ambulance siren)

 Distributions of weakly supervised results are very 

close to strongly supervised results except at the 

very high SI-SDR range
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Audio examples

Mixture Separated Car Horn Separated JackhammerSeparated Dog Bark
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 Extension to other types of masking, e.g., phase sensitive masking 

 Considering unlabeled sounds from other classes in addition to labeled sounds

 Training on datasets with fine-grained labels, e.g., bird songs of different species

 Exploring application of this technique to speech and/or music

Future directions
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