

UNSUPERVISED SPEAKER ADAPTATION USING ATTENTION-BASED SPEAKER MEMORY FOR END-TO-END ASR

Leda Sari*, Niko Moritz, Takaaki Hori, and Jonathan Le Roux

ICASSP 2020

May 2020

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL) Cambridge, Massachusetts, USA http://www.merl.com

© MERL * Currently at UIUC. This work was done during an internship at MERL.

Introduction

MITSUBISH

Chanaes for the Better

- Mismatch in speaker characteristics reduces ASR accuracy
- At test time, we often encounter unseen speakers
- Speaker adaptation: adjusting an ASR model to make it more robust to speaker variation
- Our goals:
 - An adaptation method for end-to-end (E2E) ASR
 - Applicable in unsupervised settings
 - Providing fast adaptation
 - Useful for streaming applications
 - Robust to internal speaker changes

Previous Work on Speaker Adaptation for E2E ASR

- Strong recent interest in E2E ASR but not many adaptation techniques
 - Append i-vectors [Audhkhasi+ 2017]
 - Use transformed features [Chorowski+ 2014]
 - Speaker adversarial training [Meng+ 2019]
- Utterance-level approaches \rightarrow cannot handle internal speaker changes
- Some of them are applied only to the input layer
- Some of them require speaker label \rightarrow supervised

Proposed Method

- Build memory consisting of a set of speaker embeddings (e.g., i-vectors) from training data
- Use this memory to extract an embedding (M-vector) for unseen speakers at each frame
- Append the M-vector to the neural net activations
- Inspired by the neural Turing machine (NTM) [Graves+ 2014]
 - Use memory reading operation to determine instantaneous speaker embeddings

Advantages of the Proposed Method

- Unsupervised during test time
- Frame-level approach
 - Faster adaptation
 - Useful for streaming applications
 - Robust to internal speaker changes
- NTM interpretation allows a direction for writing mechanism (future research)
- Flexible
 - Different embeddings can be used in the memory (i-vectors, x-vectors, etc.)
 - Can be used in different architectures, here joint CTC and attention model

Joint CTC and Attention E2E ASR [Watanabe+ 2017]

- Combination of sequence-to-sequence models to mitigate their individual disadvantages
- Maximize the log-likelihood of the labels given the input features
- Multitask objective

$$L_{joint} = \lambda L_{ctc} + (1 - \lambda) L_{att}$$

Neural Turing Machine [Graves+ 2014]

• Dot product:

$$K(q_t, M_n) = \frac{q_t^T M_n}{||q_t|| \cdot || M_n||}$$
• Attention weights :

$$w_t(n) = \frac{e^{\gamma_t K(q_t, M_n)}}{\sum_l e^{\gamma_t K(q_t, M_l)}}$$
• Read vector :

$$r_t = \sum_{n=1}^N w_t(n) M_n$$

Memory-based Adaptation for E2E ASR

- Attention weights :
- Read vector (M-vector) :

$$w_t(n) = \frac{e^{\gamma_t K(q_t, M_n)}}{\sum_l e^{\gamma_t K(q_t, M_l)}}, \gamma_t = 1$$
$$r_t = \sum_{n=1}^N w_t(n) M_n$$

Experimental Setup

- ESPnet [Watanabe+ 2018] joint CTC and attention framework
- Experiments on two datasets
 - WSJ (81.3/1.1/0.7hr, 283 train speakers)
 - TED-LIUM2 (211.1/1.6/2.6hr, 1267 train speakers)
- BLSTM based encoder, LSTM based decoder, location-based attention in between
- Unadapted baseline: ESPnet default recipes
- Speaker adapted baseline: appending i-vectors to hidden layers
- Experiments on the location of the memory block
- Experiments on utterances with speaker change point
- Run for four times with different seeds and report the best results (based on dev set)

WER as a function of the adaptation layer: WSJ

- Layer=0 denotes input features
- M-vector: similar on dev set WER

(6-L) layers

Memory block

L layers

WER as a function of the adaptation layer: WSJ

- Layer=0 denotes input features
- M-vector: similar on dev set WER, 10.6% better on eval set WER

WER as a function of the adaptation layer: TED-LIUM2

• Similar performance with i-vectors and M-vectors

WER as a function of the adaptation layer: TED-LIUM2

• Similar performance with i-vectors and M-vectors

Speaker level vs Utterance level i-vectors

- i-vector system uses speaker i-vectors, hence requires speaker knowledge during test time
- Remove the advantage by using utterance level i-vectors
- M-vectors perform better than speaker or utterance i-vectors on the test data

test
1621
4.2 11.0

Utterances with Speaker Change

- Utterance i-vectors are repeated for all frames in an utterance
- M-vectors are computed at frame-level
- Compare the speaker change performance
- Simulate the condition by removing silences at the boundary and concatenating audio
- Denote the new test sets with *, e.g. dev93*, eval92*

Utterances with Speaker Change: Results

• M-vectors are more robust to speaker change

	$\sin \xi$	single speaker			speaker change		
WSJ	dev9	3 ev	eval92		93*	$eval92^*$	
i-vector	6.4	Ĺ	4.7		.4	7.8	
M-vector	6.5	Z	4.2		6	4.9	
		• 1	1		1	1	
		single s	speaker	S	peake	r change	
TED-LIU	- M2	single s dev	speaker test		p eake dev*	r change test*	
TED-LIU i-vector			<u> </u>	(

Summary

- An NTM-inspired unsupervised speaker adaptation method for E2E ASR
 - Frame-level approach
 - Online adaptation
 - The M-vector at each frame is a weighted combination of the memory vectors
 - Weights are determined by the attention-based read mechanism
- M-vectors
 - Perform similarly or slightly better than using the oracle i-vectors
 - More robust to speaker changes within utterances than the i-vectors

MITSUBISHI ELECTRIC Changes for the Better