Neural Turbo Equalization to Mitigate Fiber Nonlinearity

Toshiaki Koike-Akino, Ye Wang, David S. Millar, Keisuke Kojima, Kieran Parsons

September 24, 2019

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL)
Cambridge, Massachusetts, USA
http://www.merl.com
Machine learning for optical communications
- Research trend
- Optics applications
- Nonlinearity compensation

Deep neural network (DNN) for DP-QAM
- From maximum-likelihood to machine learning
- Multi-label binary cross-entropy loss
- Turbo equalization (TEQ)

Performance analysis
- Turbo feedback can reduce decoder iteration
- Up to 1.5dB gain over conventional methods

Summary
Machine Learning (ML)

- K-means
- Gaussian mixture model (GMM)
- Principal component analysis (PCA)
- Independent component analysis (ICA)
- Support vector machine (SVM)
- Self-organizing map (SOM)
- Hidden Markov model (HMM)
- Artificial neural networks (ANN)
- Deep learning (DL)
- ...

© MERL

Sept 24, 2019: Koike-Akino et al. neural turbo equalizer
ML Success in Audio & Visual Signal Processing

- Denoising, segmentation, classification, translation, dialog, recognition, decomposition, generation, super-resolution, ...
ML surpassed Human-Level Performance

• For some applications, ...

DARPA Grand Challenge
Autonomous Vehicle Races

- DGC I
 Barstow to Primm
 March 13, 2004
 142 miles
 10 hours
 $1M

- DGC II
 Desert Classic
 October 8, 2005
 132 miles
 10 hours
 $2M

- DGC III
 Urban Challenge
 November 3, 2007
 60 miles
 6 hours
 $3.5M

Computer won world champion of chess
(Deep Blue) (Garry Kasparov)

May 11th, 1997

(Reuters = Kyodo News)
ML meets Optical Communications

- New **Moore’s Law** rediscovered here:
 Number of articles grows exponentially, nearly **doubling** every year
 - Beyond 2020, thousands of publications per year will appear....
Deep Learning Applications for Optics

Already approx. 1000 related articles:

- Modulation classification
- Link quality monitoring
- Resource allocation
- End-to-end design
- Signal detection
- Nonlinear compensation
- Photonic circuit design
- Optical neural processor
Why ML for Nonlinearity Compensation?

- Fiber channels are governed by **nonlinear physics in nature**
 - Self-phase modulation, cross-phase modulation, four-wave mixing, etc.
- Spectral efficiency can be improved by nonlinearity compensation
 - **Complicated model-based approaches** are required to capture real physics
- **Terabit-class massive data within a second** can be obtained
 - Deep learning: New **data-driven approach**. Suited for **massive parallel computing**

Nonlinear Schrodinger Equation:

\[
\frac{\partial E}{\partial z} = \left(-\frac{1}{2} \alpha - \beta_1 \frac{\partial}{\partial t} - i \beta_2 \frac{1}{2!} \frac{\partial^2}{\partial t^2} + \frac{1}{3!} \beta_3 \frac{\partial^3}{\partial t^3} \right) E + \gamma \left(\|E\|^2 I - \frac{1}{3} (E^\dagger \sigma_3 E) \sigma_3 \right) E
\]

- **PMD**
- **CD (GVD)**
- **CD slope**
- **SPM/XPM**
- **XPoM**

Nonlinear propagation

Distance = 1000 km
Nonlinear Equalization

• Nonlinear impairments may be compensated by *nonlinear equalization*:
 – Decision feedback equalizer
 – Maximum-likelihood sequence equalizer
 – Volterra equalizer
 – Digital back-propagation
 – Turbo equalizer (TEQ)
 – Deep neural networks (DNN)

\[
y(n) = \sum_{p=0}^{P} \sum_{l_1,\ldots,l_p=0}^{L_p} h(l_1,\ldots,l_p) x(n-l_1)x^*(n-l_2)\cdots x(n-l_p) + z(n)
\]

Volterra series expansion

Volterra [Peddanarappagari ‘97]

Digital back-propagation [Li et al ‘08, Ip-Kahn ‘08]

TEQ [Haunstein ‘04, Djordjevic ‘07]

DNN [Sidelnikov ‘18, Koike-Akino ‘18, Kamalov ‘18]
ML2ML: Maximum-Likelihood to Machine Learning

- Nonlinear equalization based on **maximum-likelihood (ML)**
 - Log-likelihood maximization, depending on nonlinear channel statistics

\[
\max_i \log \Pr(x_i|y)
\]

Maximum-Likelihood (ML)

- How to determine?
 - Model based?
 - Model mismatch?

- Cross-entropy minimization based on **machine learning (ML)**
 - Learning nonlinear channel statistics given data
 - Lower bound maximization of **GMI** (generalized mutual information)
 - Analogy to SSFM: sequence of **linear** transform and **nonlinear** operation

Cross-entropy minimization based on **machine learning (ML)**

(a) \(-5 \text{ dBm Launch}\)
(b) \(-3 \text{ dBm Launch}\)
(c) \(-1 \text{ dBm Launch}\)

Post-Linear Equalization Distortion (16 spans)

Binary cross entropy (BCE) corresponds to GMI

\[
E\left[\sum_i -\log \Pr(x_i|y)\right] \rightarrow 1 - \text{GMI}
\]
Proposed Method: DNN x TEQ

- We propose a new TEQ based on DNN
- We learn nonlinear statistics over 500,000 symbols on system model:
 - Non-zero dispersion-shifted fiber (NZDSF) 80km x N spans
 - 3.9ps/nm/km, 1.6/W/km, 0.2dB/km
 - 5% residual dispersion per span (RDPS)
 - Erbium-doped fiber amplifier (EDFA) 5dB noise figure
 - 3-channel DP-QAM at 34GBd, root-raised cosine role-off 0.1
 - DVB-S2 standard LDPC codes
 - 31-tap least-squares linear equalizer prior to DNN-TEQ
DNN-TEQ Architecture: Learning Residual Nets

- Feeding Gaussian A Priori (APR) LLRs, emulated as decoder feedback

Decoder feedback skip to learn extrinsic (outer residual)
Extrinsic Information Transfer (EXIT) Analysis

- Trained DNN can produce improved LLR, given decoder feedback

![Graph showing Extrinsic Information Transfer (EXIT) Analysis](image)
Combined EXIT Trajectory for DNN x LDPC

- EXIT of trained DNN, combined with LDPC decoder (-2dBm, 9/10 DVB-S2)

Turbo DNN boosts decoder convergence
Performance Evaluations (DP-64QAM, 4/5-LDPC)

- LE
- LDA
- NB
- QDA
- SVM
- LSTM
- DNN
- Turbo DNN

Launch Power (dBm) vs. Q (dB)

- Turbo DNN: 1.5dB improvement
- DNN: 1.7dB improvement

QDA, SVM < 3dBQ
Summary

• We showed some perspectives of deep learning techniques for nonlinear optical fiber communications
 – Nonlinear fiber distortion may call for **nonlinear** signal processing
 – **Data-driven approach** can be a viable alternative to model-based approaches as massive data are available in high-speed optical transmission

• We proposed **DNN-based TEQ** which is scalable to high-order QAM
 – Turbo DNN can **accelerate** LDPC decoder iterations
 – Showing up to **1.3dB gain** over conventional DNN for DP-64QAM
 – DNN output can be directly used as extrinsic **LLR** for FEC decoder

• There are a great amount of open research fields to apply deep learning techniques to optical communications because of the nature of nonlinear physics