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Adaptation vs. Learning ?

Before reviewing some results in the field of adaptation and learning,
let us first define the two terms: Learn and adapt. Refereing to the Oxford
dictionary we find these two definitions; Adapt is defined as: to change some-
thing in order to make it suitable for a new use or situation, or to change
your behavior in order to deal more successfully with a new situation. As
for learn, 1t 1s defined as: to gain knowledge and skill by studying, from ex-
perience, or to gradually change your attitudes about something so that you
behave in a different way. [Benosman 2016]

Adaptation: change
Learning: gradual change by repetition

Benelux Meeting on Systems and Control 2022
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Main points of the talk

Part 1: Theory

- Brief survey of adaptive control: model-based adaptation, data-driven
(classical RL & control theory inspired RL, extremum seeking control), and
learning-based adaptation (hybrid: model-based + data-driven)

- Learning-based adaptive control for nonlinear systems with constant/time-
varying parametric uncertainties (ESC, GP-UCB, ADP, CBF)

- Learning-based feedback gains auto-tuning for nonlinear systems affine in
the control (ESC)

- Indirect learning-based adaptive control for linear systems under constraints
(MPC framework) (ESC)

- Iﬁ?_e)lrning-based adaptive PDEs stable model reduction and estimation (ESC,

Part 2: Examples

- Mechatronics applications: Electromagnetic brakes, servo motors
- Fluid dynamics applications: Airflow modeling and estimation
- Robotics applications

* ESC: Extremum seeking control, GP-UCB: Gaussian process upper confidence bound, ADP: Adaptive
dynamic programming, CBF: Control barrier function, MPC: Model predictive control. RL: Reinforcement learning,
PDE: Partial diff. equations.
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Part I: Brief survey and some theoretical
results
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Figure/classification from: M. Benosman, 2018, “Model-based vs. Data-Driven Adaptive Control: An Overview", International Journal
of Adaptive Control and Signal Processing, 32(5), pp. 753-776.

Model-based Data-Driven

Fully Model-based : Learning-based
|

Our focus here

I Model information ¥ Dynamics nature I

" Parametric estimation objective W control objective
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Figure 1.6 Indirect adaptive control.

*» Model of the system, e.g., law of physics or Input/Output models
s Controller and filter are based on the model of the system

Oc

- Linear model (direct vs. indirect adaptation), e.g., loannou et al. 2012, Landau et
al. 2011, 2017, Goodwin et al. 1984, 2014, Narendra et al. 1989, Tsakalis et al.
93, Sastry 2011, Tao 2003, Mosca 95

- Nonlinear model (direct vs. indirect adaptation), e.g., Krstic et al. 95, Slotine et
al. 91, Spooner 2002, Astolfi et al. 2008, Fradkov et al. 99, Astolfi 2015, Guay et
al. 2015, Taylor et al. 2020

- Infinite dimension and delays, e.g., Wen et al. 89, Smyshlyaev et al. 2010
- Constrained model (MPC type), e.g., Mosca 95, Guay et al. 2015

- Stochastic model, e.g., Sragovich 2006

- Multi-agent model, e.g., Lewis et al. 2014
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update g to maximiz J(U)

% Reinforcement Learning(RL): Stochastlc Markov Decision Process (MDP)

% RL: Control policies are designed from interaction with a simulator and/or
with the real environment

% (Approximate) Dynamic programming, (Approximate solutions) Bellman

optimality equation

Classical (CS) RL:

- Model-based data generation (simulator-based/enhanced learning),
e.g., Werbos 92, Bertsekas 96, Powell 2007, Busoniu 2010, Levine et
al. 20, As et al., 2022

- Model-free (real environment-based learning), e.g., Sutton et al. 98,

Levine et al. 20
- Multi-agent models, e.g., Oliehoek et al. 2016

Figure courtesy of Jemmy Queeney@Boston University

Control theory-‘inspired’ RL:
Lyapunov-based RL, e.g., Perkins et al. 2002, Chow et al. 2018, Chow

et al. 2019, Russel et al. 2021
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static/dynamic stationary map static/dynamic time-varying map
—| Cost function —| Cost function
u Q(t, u)
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< Extremum seeking control (ESC)

s Data-driven optlmlzatlon with estimation of the (hlgher order) derivatives of
the cost function, i.e.. ‘zero-order’ optimization

- Deterministic, e.g., Leblanc 1922, Krstic et al. 2000, Ariyur et al. 03, Zhang
et al. 12, Scheinker et al. 16, Feiling et al. 21, Durr et al. 13, NeSic et al. 13,
Tanletz?l. 2013, Guay et al. 15, Guay et al. 20, Benosman et al. 21a, Poveda
et al.

- Stochastic, e.g., Liu et al. 12, Manzie et al. 09, Radenkovic et al. 16

- Infinite dimension, e.g., Oliveira et al. 20, Oliveira et al. 21, Feiling et al. 18
- Hybrid, e.g., Poveda et al. 17, Poveda 2018

- Multi-agent, e.g., Poveda 2018, Poveda 21a, Poveda 21b
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¢ lterative Learning Control (ILC), e.g., Owens 2015
% Genetic algorithms, e.g., Dracopoulos 2013

** DNN/ DNN- RL, e.g., Arulkumaran et al. 2017, Levin 2013, Wang et al. 2016
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¢ Learning-based (hybrid: model-based control + data-driven adaptation)

Data-driven

: Model-based
learning

control

Merging model-based control and
data-driven learning algorithms



¢ wmsuBisHI
& % ELECTRIC

Changes for the Better

Learning-based Adaptation
*» Learning-based (hybrid: model-based control + data-driven adaptation)
|ID-based (indirect adaptation):

- ESC *-based, e.g., Benosman 2016

- GP-based, e.g., Benosman et al. (2017a,2017b, 2018, 2019),
Berkenkamp et al. 2017, Chakrabarty et al. 2021

- NN-based, e.g., Lewis et al. 99, Spooner et al. 02, Wang et al. 2010

- Learning-(ID) MPC, e.g., Benosman et al. 2014, Subbaraman et al.
2016, Limon et al. 2017, Hewing et al. 2020

- Ctonltrgloté?rrier functions (CBFs)-based, e.g., Lopez et al. 2020, Emam
et al.

‘Not’ ID—based (direct adaptation):

- ‘Deterministic’ RL: ADP, e.g., Vrabie et al. 2013, Lewis et al., 2013,
Faust et al. 2014, Dalal et al. 2018, Marvi et al. 20, Vamvoudakis et al.
2021, CBFs-based learning, e.g., Cheng et al. 2019

- Feedback controller tuning, e.g., Gain tuning, e.g., Hjalmarsson 02,
Benosman 2016, Duivenvoorden et al. 2017, Benosman et al. 21b,
MPC hyper-parameters tuning, e.g., Hewing et al. 2020

* ESC: Extremum seeking control, GP: Gaussian process, ADP: Adaptive dynamic programming, MPC: Model
predictive control.
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ety Main points

- Learning-based adaptive control for nonlinear
systems with constant/time-varying parametric uncertainties

(ESC, GP-UCB, ADP, CBF)’

- Learning-based iterative feedback gains tuning for nonlinear
systems affine in the control (ESC)

- Indirect learning-based adaptive iterative control for linear
systems under constraints (ESC-MPC framework)

- Learning-based adaptive PDE stable model reduction/
estimation (ESC, RL)

* ESC: Extremum seeking control, GP-UCB: Gaussian process upper confidence bound, ADP: Adaptive
dynamic programming, CBF: Control barrier function, RL: Reinforcement learning
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- Learning-based adaptive control for nonlinear
systems with constant/time-varying parametric uncertainties
(ESC, GP-UCB, ADP, CBF)

* ESC: Extremum seeking control, GP-UCB: Gaussian process upper confidence bound, ADP: Adaptive
dynamic programming, CBF: Control barrier function, RL: Reinforcement learning



o Learning-based adaptive

Changes for the Better

Control: a modular approach

MODEL-BASED
PART

BOUNDEDNESS

: (SAFETY)
. Y/ Y
Parameters estlmateS// // Measurements
/Gains tuning
I DATA-DRIVEN
: Model-Free PART
I Learning-based
. . 1€

I parameters estimation
I
: A=F(P) CONVERGENCE

(PERFORMANCE )
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control for constant uncertainties

T =Tkl
A € RP parametric uncertainties
the output vector y = h(x)

where h: R"™ — R"  with smoothness of f, and h.

The control objective here is for y to asymptotically track
a desired smooth vector time-dependent trajectory s :
0,00) — R",
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control for constant uncertainties

Modularity through (ISS) robustness

= i) s LiISS if and only

if there exist functions 3 € ICL and 4, 72 € K such that

) + M (/Ot "/2(|!U(8)||)d8>

"Ito H., and Jiang Z., 2009, Necessary and sufficient small gain conditions for integral input-to-state stable systems: A Lyapunov
perspective,. IEEE Transactions on Automatic Control, vol. 54, no. 10, pp. 2389.2404,

(2, &, w)ll < B(IE



" Learning-based indirect adaptive
control for constant uncertainties

Assumption 1:

el =0t — Urapll)s
= Uiss (t, 7 A) R RE s IRP . 5 JR™

éy == fey (t7 6'!/7 eA)

A

is 1ISS from the input vector e = A —A
to the state vector €,
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static/dynamic stationary map static/dynamic time-varying map

—>| Cost function Scheinker A. et al. 16
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Advantages: Block diagram of a functional extremum seeking
= Model-free (zero-order) optimization control algorithm

» Gradient implicit estimate using one measurement

per learning iteration (good for real-time applications)
» Robustness to noise

» Robustness to initial conditions
» Input and state constraints

Block diagram of a static extremum seeking
control algorithm

Analysis™:

= Averaging theory

= Singular perturbation theory
(for dynamic maps)

* Ariyur K.B., Krstic M., 2003, Real Time Optimization by Extremum Seeking Control. New York, NY: John

Wiley & Sons, Inc. (Note: see this link for an ‘easier’ introduction: http:/flyingv.ucsd.edu/krstic/talks/talks-
files/extremum-seeking-DISC12.pdf)



http://flyingv.ucsd.edu/krstic/talks/talks-files/extremum-seeking-DISC12.pdf
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aeeene Learning-based indirect adaptive
control for constant uncertainties

Basic intuition of ESC

y = Qu)

Cost function
U ‘ HPF
. 3 ¢ % .
asin(wt) —>Q— ku/s asin(wr) = d(t)
Negligeable changes in y

- ® ............................ W
< e - s ~
’ HE .
’ N
’ S Lhse b
’ HEE
s R




Changes for the Better

" Learning-based indirect adaptive
control for constant uncertainties

ESC uncertainties estimator

cost function Q(A) = F(e,(A))
where F: R" — R,
(0] =0, Jle;) >0 fore; =0

If not intrinsically, it can
be forced by an iterative

or batch-to-batch
Implementation

Assumed to bg well defined, i.e.,
for the same A, we obtain the
same Q(A)




Changes for the Better

" Learning-based indirect adaptive
control for constant uncertainties

Assumption 2:
@ has a local minimum at A* = A

Assumption 3:

en(to) is sufficiently small
Assumption 4: |

() 1s analytic H ( I = o & =10
A € V(A¥)
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" Learning-based indirect adaptive
control for constant uncertainties

Lemma.: - Mode-based - Data-driven
the system i = f(x,A,u) with the cost )
under Assumptions 1, 2, 3, and 4
the control [t;+, where A is estimated
with the multi-parameter extremum seeking

T; = a;stn(w;t + E)Q(A)

A; = z; + a;sin(w;t — s T Jly D}

*M. Benosman, 2014, Learning-based Adaptive Control for Nonlinear Systems, European Control
Conference.
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" Learning-based indirect adaptive
control for constant uncertainties

Lemma: Cont.
with W; 7& Wi, Wi S W 7& Wi, iaja k€ {1* 7p}
ensures that

ley ()] < B(lley (0)]], 1)+ / Y(B(lea @), ) +lleallmaz))ds

where HGAHmaT = —I— \/ZZ = 12, f1 EQ =1 6’(0) cD,,
}wL,OeE/C B e L, /36/C£and7€/€

-----

Wo = MaX;e{1,



amrnine Learning-based indirect adaptive
control for time-varying systems

b =N, ar)
A € RP parametric uncertainties

the output vector y = h(x)

where h : R"” — R | with f being piecewise continuous in ?

and(at least) locally Lipschitz in x, u, uniformly in ¢, 4 1s smooth.

The control objective here is for y to asymptotically track
a desired smooth vector time-dependent trajectory s :
0,00) — R",
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sz |_@@rning-based indirect adaptive
control for time-varying systems

Assumption 1:

ey(t) =y(t) — Yres(t)
= Uiss (t,aj’A): R RE s IRP . 5 JR™

éy == fey (t7 6'!/7 eA)

A

is 1ISS from the input vector e = A —A
to the state vector €,



sz |_@@rning-based indirect adaptive
control for time-varying systems

ESC (time-varying) uncertainties estimator

cost function

A A

Q(Avt> — F(elI(A)alL)
where F: R" x Rt = RT, F(0,t) = 0,

Fley,t) > 0,e, #0



ANITSUBISH

Learning-based indirect adaptive
control for time-varying systems

Assumption 2:
Q has a local minimum at A* = A

Assumption 3:

294D | o, Vit € RF, VA € RP.
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sz |_@@rning-based indirect adaptive
control for time-varying systems

Lemma™ -Model-based
the system & = f(t,2. A, u) with the cost @,
then under Assumptions 1, 2, and 3,

the control

ul_s_s )

- Data-driven

where A is estimated

with the multi-parameter extremum seeking

= a/(w;)cos(w;t) — kv/w;sin(w;t)Q (A, 1)

26{1,...,7)}

* M. Benosman, 2014, Extremum Seeking-based Indirect Adaptive Control for Nonlinear Systems, IFAC

World Congress.

** Scheinker A., Krstic M. 2016, Model-Free Stabilization by Extremum Seeking. Cham, Switzerland:

Springer.
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sz |_@@rning-based indirect adaptive
control for time-varying systems

Lemma.: Cont.

with a > 0, £ > 0, w; # Wj, 1,9,k € {1,...,])},
w; > w*, Vi € {1,...,p}, with w* large enough, ensures

ley ()] < B([ley (0)]],2) —|—a(/ Y(lleas)|)ds
where a € K, B € KL, v € K, and |lea| satisfies:



ot R . . .
-euiee | @@rning-based Indirect adaptive
control for time-varying systems

Lemma.: Cont.

1-(L,d)-Uniform Stability: For every ¢y €]d, oc], there

exists ¢; €|0,00] and w > 0 such that for all ¢y € R and

for all zg € R™ with ||ea(0)]| < ¢1 and for all w > @,
HGA(If,EiA(O>>|| < ¢, Vt E [to,OO_
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amrnine Learning-based indirect adaptive
control for time-varying systems

Lemma.: Cont.

2-(%,d)-Um’f0rm ultimate boundedness: For every c¢; €

|0, 00] there exists ¢ €]d,00] and w > 0 such that for
all tp € R and for all o € R™ with ||ea(0)|| < ¢; and for
all w > w,

||€A(t,€A<O)>H < 09, Vi € [to,OO[
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sz |_@@rning-based indirect adaptive
control for time-varying systems

Lemma: Cont.
3-(L,d)-Global uniform attractivity:Foralley, ¢ € (d,)

there exists 7' €]0, 00| and @ > 0 such that for all ty € R
and for all x9p € R™ with ||ea(0)|| < ¢1 and for all w > @,
lealt,ea(O))l < c2, ¥t € [to + T 00|
where d is given by: d = min{r €]0,00[: 'y C B(A,r)},

with Ty = {A e Rr: |22 <\ [0} g < gy < 1,

and B(A,r) ={A eR": ||A- Al <r}.
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Changes for the Better

iterative control for nonlinear systems affine
in the control variable’

* Benosman M., Farahmand A.-M., Xia M.2018, Learning-based iterative modular adaptive control for nonlinear systems,
International Journal of Adaptive Control and Signal Processing, 33(2), pp- 335-355, doi.org/10.1002/acs.2892.

We consider an output tracking problem for systems that are affine
In the control

r = f(z) +Af(t 2) + g(x)u, £(0) = o, (3)

y = h(x), with ref. trajectory y4(t) .
under classical smoothness and relative degree assumptions, we
can design an ISS controller satisfying,

ley (D1 < B(lley (o)l T —to) + W(t Sup_ lea()l),

where ¢, ea denote the output tracking error and the
uncertainties estimation error, respectively.



deme’  Learning-based indirect adaptive

Changes for the Better

iterative control for nonlinear systems affine
in the control variable

ISS controller (Model-based)
y(t) = bE®)) + AE®)ult) + Ab(t, £(1)), Ab(t,E() = EQ(&,t), (20)

up = U+ ur, (14)
u, = A7) [vg(t, &) — b(€)],| VO linearization (9)
u, = — A Y OBTP2||QE, V)| + E)Q(E,1)]. | Lyapunov reconstruction (21)
gy p— (13)
y () = ), v @, oy )T

f(t) — [gl(t)a T gm(t)]T’

§) = i), -, u" VW) 1<i<m

vsi = yin) — K (Y =yl Y o K (i — yia).

4, b are functions of f, g, and h, B is a sparce matrix of Os and 1s,
A is function of the feedback gains.
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ece  Learning-based indirect adaptive

Changes for the Better

iterative control for nonlinear systems affine
in the control variable

Multi-parametric ESC uncertainties estimator (Data-driven)

A A

J(A) = F(2(A)), A(t) = [E(1,1), ..., E(m,m)]” (24)
where F : R" - R, F(0) = 0, F(z) > 0forz € R" — {0}.

T; = a; sin(w;t + %)J(ﬁ), a; >0, ie{l,2,... ,mz}

SA@(t) = 53@ + a; Sin(w@'t — g),

~ ~ (25)
A’i (t) — Ai—naminal + 5A’L (t)v

SA;(t) = 0N (I — Dts), (I — Dty <t < Ity,
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~wcecwe | earning-based indirect adaptive

iterative control for nonlinear systems affine
in the control variable

Algorithm 1 MES-based Learning Adaptive Controller
— Initialize: I = 1, x(0) = xg, Jip > 0, A = A ominals K:, .. KZ =1,...,m.
— Solve (13).
— Apply the controller (9), (14), and (21), to (3), (20).

(Loop) — Evaluate the learning cost J by (24).
—IF J < J;, — Exit Loop, IF not:
— I=1+1.
— Estimate A by (25).
—Resett € [(I —1)ty, Its], ((L — 1)ty) = xo, then, apply the controller (9), (14), and
(21), to (3), (20).
— Go to (Loop).
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~wccRc  |Learning-based indirect adaptive

Changes for the Better

iterative control for nonlinear systems affine
in the control variable

GP-UCB’ uncertainties estimator (Data-driven)

- Gaussian process upper confidence bound GP-UCB’ is used as the data-
driven part of the controller

- Bayesian stochastic optimization, i.e., noisy observation of the cost
function

- Global optimum on compact search sets

* Srinivas N, Krause A, Kakade SM, Seeger M., 2010, Gaussian process optimization in the bandit setting: No
regret and experimental design. In: Proceedings of the 27th International Conference on Machine Learning.
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ece  Learning-based indirect adaptive

Changes for the Better

iterative control for nonlinear systems affine
in the control variable

GP-UCB uncertainties estimator (Data-driven)

Let us assume that J is a function sampled from a Gaussian Process (GP).

We recall that GP is defined by a mean function
wB) =E [ J(B)],

and its covariance function (or kernel)

A 3_3/ 2
e.g.,K(A,A") =exp (—H STE | j, (32)

as the squared exponential kernel with length scalel > 0
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swicnc’ | earning-based indirect adaptive

Changes for the Better

iterative control for nonlinear systems affine
in the control variable

GP-UCB uncertainties estimator (Data-driven)

Let us first briefly describe how we can find the posterior distribution of a GP(0,K), i.e., a
GP with zero prior mean. Suppose that for A [ {31, A, ..., A -1} C D, we have observed
the noisy evaluation y; = j(ﬁl) = J(ﬁz) +n; with n; ~ N(0,0°) being i.i.d. Gaussian noise.
We can find the posterior mean and variance for a new point A* € D as follows: Denote the
vector of observed values by y;_1 = [y1,...,y7-1]' € R'~!, and define the Grammian matrix
K e RI-2XI=1 with [K]; ; = K(A;, A;), and the vector K, = [K(A,, A*),...,K(A;_,,A*)]. The
expected mean 17 (A*) and the variance o I(ﬁ*) of the posterior of the GP evaluated at A* are (cf.

Section 2.2 of [63]) 1

) =K. [K+0°T] yr-1, (33)

=
~
>)

o2 (A*) = K(A*,A*) = kT [K + ¢%1] " K. (34)
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Changes for the Better

iterative control for nonlinear systems affine
in the control variable

GP-UCB uncertainties estimator (Data-driven)

At iteration I, the GP-UCB algorithm selects the next query point A; by solving the following

optimization problem:

Nested nonlinear optimization
VS.

. . L N . A 1/2 A
simple grad:zegtce'stlmanon in AI «— argmln r—1 (A) _ ﬂI/ o7_1 (A) )
' AeD

(35)

Remark 12. The optimization problem (35) is often nonlinear and nonconvex. Nonetheless, solving it only requires
querying the GP, which, in general, is much faster than querying the original dynamical system. This is important
when the dynamical system is a real system and we would like to minimize the number of interactions with it before
finding a A with small J(A). One practical way to approximately solve (35) is to restrict the search to a finite subset DY
of D. The finite subset can be a uniform grid structure over D or it might consist of randomly selected members of D.

D)

* Srinivas N, Krause A, Kakade SM, Seeger M., 2010, Gaussian process optimization in the bandit setting: No

regret and experimental design. In: Proceedings of the 27th International Conference on Machine Learning.



¢ mTsuBiSHI

~wccwe | earning-based indirect adaptive

iterative control for nonlinear systems affine
in the control variable

Algorithm 2 GP-UCB-based Learning Adaptive Controller
— Initialize: I = 1, z(0) = xg, Jin > 0, A = Anominal-

— Apply the controller (9), (14), and (21), to (3), (20).

(Loop) — Evaluate the learning cost J by (24).
—IF J < Ji, — Exit Loop, IF not:
— I=I+1.
— Estimate A by (32), (33), (34), (35), and (36).
—Reset t € [(I — 1)ty, t¢], x(({ — 1)ts) = xo, then, apply the controller (9), (14), and
(21), to (3), (20).
— Go to (Loop).

The dual estimation problem can be solved using similar ‘robustness + learning’ approach, e.g., Chakrabarty A., Benosman
M., 2021, Safe learning-based observers for unknown nonlinear systems using Bayesian optimization, Automatica, vol. 133,
doi.org/10.1016/j, Automatica. Koga et al., 2021, Extremum Seeking-Based Robust Observer Design for Coupled

Thermal and Fluid Systems, Int. J. of Adaptive Cont. and Signal Processing, 35(7).
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ceceetes Adaptive dynamic programming™

Linear time-invariant model

t=Ax+ Bu, x € R", u € R™

where, A is unknown.

The pair (A, B) assumed to be stabilizable.

LQR-type cost function of the form
V(u) = ftzo (2 (7)Riz(1) + u! (7)Rou(7))drT,

Rlzoa

Ry > 0.

u*(t) =

K =R,

—KiU(t),
I1BTP,

Model-based

** Vrabie D, Vamvoudakis K, Lewis FL. Optimal Adaptive Control and Differential Games by Reinforcement Learning

Principles. England: IET Digital Library; 2013.

** More details about ADP algorithms can be found in these two talks by F. Lewis:
https://lewisgroup.uta.edu/FL %20talks%202017/2018%2005%20RL %201-%20main.pdf

https://www3.nd.edu/~pantsakl/Archive/WolovichSymposium/files/Lewis Presentation.pdf



https://lewisgroup.uta.edu/FL%20talks%202017/2018%2005%20RL%201-%20main.pdf
https://www3.nd.edu/~pantsakl/Archive/WolovichSymposium/files/Lewis_Presentation.pdf

ot M
ameniar Acjaptive dynamic programming
P solution of the Riccati equation
AP+ PA—-PBR;'B'"P+Q =0,
A unknown! — Learning P

Integral reinforcement learning policy iteration algorithm
(|RL-P|A) Data-driven

TPy = [T o (T) (R + K Ro Kz (T)dr + 2t (t + T)Px(t +T),

t

Kisin=R,'BTP;, i=1,2,...

where the initial gain K is chosen such that is A — BK;
stable.
Under conditions of stabilizability/detectability:

u*(t) — argming )V (u), t € [tg, o0|.

** Vrabie D, Vamvoudakis K, Lewis FL. Optimal Adaptive Control and Differential Games by
Reinforcement Learning Principles. England: IET Digital Library; 2013.
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wrose— Gontrol barrier function (CBF)-
based learning control™

RL Agent Environment

-
/i‘

- Model update

Figure from [*] with the addition of the yellow part

* Emam et al. 21, Safe Model-Based Reinforcement Learning using Robust Control Barrier
Functions, arXiv:2110.05415v1.

** Xu X., et al. 2015, Robustness of Control Barrier Functions for Safety Critical Control. A. D IFAC-
PapersOnLine, 48(27)
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wernesee Gontrol barrier function (CBF)-
based learning control™™

Model:  &(t) = f(x(t)) + g(x(t))u(x(t)) +d(x(t)),d € D
D(z") = co¥(z") = co{ep1(z) ... ¥p(z")}, Vz' € R,

- Model-based
icv: RCBF R
Policy:  ROBF(y/) —hu* (o) 4 uPE(e')| | Dataciver
Filter: ull(z') ~ my(-|z’)
u*(x') = arg min ||ul|® + 1€
ucER™

s.t. VR(z) " (f(z") + g(z") (u(z") + «BL(z")))
— a(h(z")) — min Vh(z") " ¥ (z') + €

* Emam et al. 21, Safe Model-Based Reinforcement Learning using Robust Control Barrier
Functions, arXiv:2110.05415v1.

** Xu X., et al. 2015, Robustness of Control Barrier Functions for Safety Critical Control. A. D IFAC-
PapersOnLine, 48(27)

Vv
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'\m Main points

- Learning-based iterative feedback gains tuning for nonlinear
systems affine in the control (ESC)

* ESC: Extremum seeking control, GP-UCB: Gaussian process upper confidence bound, ADP: Adaptive
dynamic programming, CBF: Control barrier function, RL: Reinforcement learning
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Changes for the Better

Learning-based iterative feedback gains

auto-tuning for nonlinear systems *

i = f(2) + Af(@) + g(@)u, £(0) = o
i =.h(d@),
where x € R",u € R"*,y € R™ (ny, > m).

Assumption 1: f : R" — R" and the columns of g : R" —
R" "™ are C* vector fields on a bounded set X of R™ and h(z)
is a C™ function on X. The vector field Af(z) is C* on X.

* M. Benosman, 2016, Multi-Parametric Extremum Seeking-based Auto-Tuning for Robust Input-Output
Linearization Control", International Journal of Robust and Nonlinear Control, 26(18), 4035-4055.
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Changes for the Better

Learning-based iterative feedback gains

auto-tuning for nonlinear systems

Assumption 2: System (1) has a well-defined (vector) relative
degree {r1,...,rm} at each point z’ € X, and the system is

J J
/ /

linearizable, i.e. Y ._} ri=n

Assumption 3: The uncertainty vector Af is s.t. |Af(z) <
d(x) Yo € X, where d : X — R is a smooth nonnegative
function.
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Learning-based iterative feedback gains

auto-tuning for nonlinear systems

Assumption 4: The desired output trajectories y;q are smooth
functions of time, relating desired initial points y;0 at t = 0 to
desired final points y;r at t = tf, and S.t. y,a(t) = yif, Yt >
byl S00E | Lyl

Control objectives
- uniform boundedness of a tracking error.

- feedback gains vector K 1s iteratively auto-tuned,
to optimize a desired performance
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aeiere. Learning-based iterative feedback

gains auto-tuning for nonlinear systems

CONTROLLER DESIGN: (using I/O linearization and Lyapunov

reconstructlon) I/O linearization
Step one: Passive robust control design Lyapunov reconstruction
o . il R f g
u=|A""(&)(vs(t, &) —b(&))— A (§)—; k dale)| k=0 v =110 Vsm)
vt ) = iy — K, (y,‘” Dy, ”) — . — Ki (i — yia)-
V=2TP2, P>0 PA+ATP=-1
3 Bt s . / i
Gl .20 R =il e D,z = (2'(r1), ... 2" (rm)) € R™

[

e; (1) yi(t) — yig(t)
d2(.) is an upper bound of the uncertainty
A is a block diagonal matrix of the feedback gains
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aeiere. Learning-based iterative feedback

gains auto-tuning for nonlinear systems

CONTROLLER DESIGN
Step two: [terative tuning of the feedback gains

At Tt
Cﬂj@%)::hljnwgﬂ(ﬂCﬁz@ﬁﬁﬁ—ﬁjjmwzﬂ(ﬂCbu@ﬁﬁ,

P08 S0, D
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aeiere. Learning-based iterative feedback

gains auto-tuning for nonlinear systems

Step two: [terative tuning of the feedback gains
8 =[0K1,.., 6K}, . .0K", ..., 6K, 6k]T

Kj a Kj—nonzi'n,a.l ar 5Kj7 = 17 T, T = 17 ceey TTN.
k=%k nominal + 5 k k nominal > 0

ajKl I SZ”(lef 3)Q(2(8))
6K}( = TK%( ) ¥ i SO Dpeil 4 5 ) = Lsunailiys § = Ly T
J J J

Tr = arsin(wit — 5)Q(2(8))
0k(t) = zk(t) + arsin(wrt + 5),
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)‘&m Learning-based iterative feedback

gains auto-tuning for nonlinear systems

Step two: Iterative tuning of the feedback gains

w1 + wo # ws, for wy # wo # ws,
Vb bontds € {6ang g = Lty § = Vgl
f |

it s Wk & fies; s, 0= Loaty &="1lsumsmn;, @
J
large enough.
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aeiere. Learning-based iterative feedback

gains auto-tuning for nonlinear systems

Step two: Iterative tuning of the feedback gains

Assumption 7. We assume that the cost function () has a local
minimum at 3.

Assumption 8: We consider that the initial gain vector (3 1is
sufficiently close to the optimal gain vector 3~.

Assumption 9: The cost function 1s analytic and its variation With
respect to the gains is bounded in the neighborhood of o

99 (3)] < ©q, B3 > 0, B € V(B*), where V(5%) denotes

compact neighborhood of 3.
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gains auto-tuning for nonlinear systems

Put together: Robust controller + ESC tuning

Model-based

V!
u = A7 () (vs(2,§) — b(§)) — A_l(f)g k(t) d2(e)| k > 0, vy = (s1, ..., Vsm)"
v (t,€) = % 7 — K (¢) (yi('i_l) - fiffi_l)) — = K@i —Fig) i =1,...m.

y"bd(t) Yid (t T (I_ 1)tf)7 (I T 1)tf S t < Itfa fie {172: }’

K; (1) = KJL N 5K; (1) Data-driven
SR ()= 0K (I —1)tp)s (T — 1)t 26 < T,

k(t) = knominal +0k(t), Knominat >0

Sk(t) = 6k((I — 1)tg), (I — 1)ty <t <Itp, I=1,2,3..

K, 5k are estimated by the MES algorithm.




MITSUBISHI
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gains auto-tuning for nonlinear systems
— the obtained closed-loop impulsive time-dependent dynamic
system 1s well posed.
— the tracking error z is uniformly bounded.
- z1is steered at each iteration/ towards the positive
invariant set Sy = {¢ € R"| 1 —kr |9%, | > 0)

ki = [3[(%—{— 1)
- Q(B(Ity)) - Q<,8*>|§@z(%+,\/ > agi?fa?)

S [T (| PR

my . wk)

G i g 4 )

©1,02:>0, for I — oo,wo = Mazx(wgi,..,wk



SSEER' | earning-based iterative feedback

gains auto-tuning for nonlinear systems

- [ remains bounded over the iterations Ss.t.

|8((1 —|—1)tf> — B(Itf” <O.5tf]\~’1a:13(aK112,....CLKm ,ai)@2+

- m

thJ()\/ Z aKizz +ak72; I € {12}
\/ i=1,...,m j=1,...,7ri J

— satisfies asymptotically the bound

B(Its) — B < & 4

\/ L ayi?+ag?, ©1 >0, for I — oo
Y gl waplE
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Am Main points

- Indirect learning-based adaptive iterative control for linear
systems under constraints (ESC-MPC framework)

* ESC: Extremum seeking control, GP-UCB: Gaussian process upper confidence bound, ADP: Adaptive
dynamic programming, CBF: Control barrier function, RL: Reinforcement learning
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Indirect learning-based adaptive iterative
control for linear systems under

constraints (MPC framework) *, **

r(k+1) = (A+AA)x(k)+ (B+ AB)u(k)
y(k) = (C+ AC)x(k)+ (D + AD)u(k),

reR", ue R, yeRP
Tmin S I(l‘) < Tmax;

Umin i '“('I") i Umax -

/{

Ymin S Y ( k ) >~ Ymax:
T‘T‘(k G 1) — A’T‘r’l‘(k)a ye(k') — ClU{) - C,,fl“.,»(k‘.),

* Benosman M., Di Cairano S., Weiss A., 2014, Extremum seeking-based iterative learning linear MPC, |IEEE
Conference on Control Applications (prelim. idea no proofs)

** Subbaraman S., Benosman M., 2016, Extremum Seeking-based Iterative Learning Model Predictive Control
(ESILC-MPC), IFAC International Workshop on Adaptation and Learning in Control and Signal Processing
(follow up paper with convergence proofs).
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Indirect learning-based adaptive iterative
control for linear systems under

constraints (MPC framework) *, **
Assumption 1: The constant uncertainty matrices
AA, AB, AC and AD, are bounded, s.t. |[|[AAl|l2 < la,
||ABH2 < 1o HACHZ = e ||AD||2 < lps with
La. U ley tp >0
Assumption 2: There exists non empty convex sets X, C R"*",
Ky CR™™, K. C RP*™, and Kq C RP*™, such that A+ AA €
KC. for all AA such that ||AAll; < a4, B+ AB € K, for all
AB such that ||AB||s <lp, C+ AC € K. for all AC such that
|AC||]2 <lc, D+AD € K4 for all AD such that ||AD||2 < p..

Assumption 3: The iterative learning MPC problem (and the
associated reference tracking extensmng

1s a well-posed optimization problem for any matrices
A+ AAe€eKa, B+ ABe Ky, C+ACEK:, D+ AD € K,.
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Indirect learning-based adaptive iterative
control for linear systems under
constraints (MPC framework) *, **

A

Q(A) = F(y.(A)), different from the MPC cost

where A is the vector obtained by concatenating
the estimated uncertainty matrices AA, AB, AC and AD,
F:RP 5 R, F(0)=0, F(y.) > 0 for y. # 0.
Assumption 4: The cost function ) has a local minimum at
AR =4
Assumption 5: The original parameter estimate vector A is close

enough to the actual parameters vector A.
Assumption 6: The cost function 1s analytic and its variation with

respect to the uncertain variables 1s bounded in the neighborhood
of A*, i.e., there exists &2 > 0, s.t. Hg—g(A)H < & for all A €
V(A™), where V(A™) denotes a compact neighborhood of A™.



SMBEe  Indirect learning-based adaptive

Changes for the Better

iterative control for linear systems under
constraints (MPC framework) *, **

Initialization

SOLVE MPC " Model-based
CONTROL |——3 |SS -MPC

APPLY TO
SYSTEM

Data-driven

COMPUTE Q

Zi = a;sin(w;t + %)Q(A)

No
i T o
i = e @i — Ty TE 4§ Lys oy o)
s with N, < nn + nm + pn 4+ pm is‘ the number of uncertain
UPDATE THE elements, wi # wj, wi +w; # wk, 1,5,k € {1,...,Np}, and

UNCERTAINTIES w; > w*, Vi e{l,..., N,}, with w* large enough, converges to

ESTIM‘?EETSN BY the local minima of Q).

* D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “Robust tube-based MPC for tracking of constrained linear systems with
additive disturbances,” Journal of Process Control, vol. 20, no. 3, pp. 248-260, 2010.




MITSUBISHI . n
)‘m Main points

- Learning-based adaptive PDE stable model reduction/
estimation (ESC, RL)

* ESC: Extremum seeking control, GP-UCB: Gaussian process upper confidence bound, ADP: Adaptive
dynamic programming, CBF: Control barrier function, RL: Reinforcement learning
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ceeeter earning-based PDE stable model
reduction *

Consider a stable dynamical system modeled by a nonlinear partial differential equation of the form

2= Flzpt) € Z.QL = R) Foe

| i denotes a viscosity (‘()(,‘fﬁ('i(‘m]

where Z is an infinite-dimension Hilbert space.

Poz(t,z) = ®2,(t) = ) _ 2ri(t)¢i(z) € R™
i=1

where P, is the projection of z(t, ) onto R™.

ODE

S(t) = Fzo(t), ) [

The function F': R" — R" is obtained from the weak form of the original PDE (through Galerkin projection).

* Benosman M., Borggaard J., San O., Kramer B., 2017, Learning-based robust stabilization for reduced order
models of 2D and 3D Boussinesq equations, Applied Mathematical Modelling, Vol. 49, 162-181.
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The Closure-Model Concept for ROMs Stabilization

e.g., POD - F ¢
PDE eo—) q(t 21 (q(t), ), Loss of stability (in the
zn (L) = Z . 9i(z)qi(t). sense of Lagrange)
Closure Model H

4(t) = F(q(t),p)|+ H(t,q(t))- | We try to recover the stability

1) Closure models with constant eddy viscosity coefficients:
f¢ is substituted by a virtual viscosity coefficient peci. fet = ft + fte, Heisenberg ROM

2) Closure models with time and space varying eddy viscosity coefficients:

V t l’i:'T' ) N
Hoco e, a(9) = pey| s diag(dis, s dr)a(t), Vi) = § 3, T =350
“i= i=

the A; are the selected POD eigenvalues

where D € R™™" represents a constant viscosity damping matrix,
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A Lyapunov-based closure-Model for Robust ROMs

Stabilization

original PDDE == Using POD == {

Assumption 1 The norm of the vector field F is bounded by a known func-
tion of ", i.e., | F(¢")| < f(g"*).

Assumption 2 The solutions of the original PDE model are assumed
to be in L*(]0, 00); Z).
Model-based

Then, the nonlinear closure model

Hy = pn f(q7%)diag(dy, ..., dy ¢, pm >0

‘4 pod-',vpod)
stabilizes the solutions of the ROM to the invariant set

Q / A D max el
S = {qpod = R."\pod s.t. p ( ) f”q H—}—/_Lnlquodnﬂ’jaf(dll?"'3d-"\"pod-'\'-pod)+1 = 0}
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An Extremum Seeking—based Auto-Tuning of Closure Models
for ROMs

f¢ is substituted by a virtual viscosity coefficient pci. frer = p + pte, Heisenberg ROM

if the closure models amplitudes p., p,; are tuned using the MES algorithm

Data-driven | g, = ay sin(wit + 5)Q(fe, fin)
fle = y1 + ay sin(wit — F)

Y2 = ag sin(wat + 5)Q(fle, finl)
fint = Yo + ag sin(wat — %),

where Wmar = mazr(wi,ws) > w*, w* large enough, and Q the learning cost function

Q) = H(e(7))s fu = (fies fnt)
e,(t) = 2PoU(t, x) — 2(t, x), H is a positive definite function of e,

Assumption 3 The learning cost function () has a local minimum at f1 =

gLt

Assumption 4 The learning cost function ) is analytic and its variation

with respect to p is bounded in the neighborhood of p*, 1i.e., H%([z)” <

&, & > 0, o € V(u*), where V(u*) denotes a compact neighborhood of

Y i
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An Extremum Seeking—based Auto-Tuning of Closure

Models for ROMs

Then, the norm of the vector

en = (pte” — fre(t), ™ — firi(t))
admats the following bound

len®)Il < i+ Vai +a3, t — oo

{¢)
Wmax

where ay, ay > 0, & > 0, and the learning cost function approaches its
optimal value within the following upper-bound

|Q ke, fint) — Q(pe”, prt®)|| < 52(% & a.% g 3 a%) t — o0

Y.
where & = mazx,, 4,) € V(@ )l£|
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Slide from: Mowlavi S.@MIT, presentation at ICLR 21.

*%

RL-based observer ™

Full-order model

Y. = Cz, measurement y, € R?
n>1 |

Learning-based observers

Reduced-order model (ROM)

Xk == UTZk,

dimensionality
reduction

How to do the data assimilation?

Xpp1 = AXy reduced state x, € R”
y; = C.x, measurement y, € R?
Model-based
T r<n
Iy = AZy
dynamics

approximation

Kalman filter
(conventional approach)

X, = A X + K (y,— CA X))

Challenge: performs poorly
when A, is not a good model

Xk = Aer—l + ak

Reinforcement learning-trained filter

(what we propose) Data-driven

where| a, ~ my( - | Y1 X4_y)

Flexibility of nonlinear policy z, allows to
compensate for errors in A,

* Mowlavi S., et al., 2021, Reinforcement Learning State Estimation for High-Dimensional Nonlinear Systems,

ICLR Workshop: Al for Earth and Space Science.

** Benosman et al., 2020, Reinforcement Learning-based Model Reduction for Partial Differential Equations,
World Congress of the International Federation of Automatic Control (IFAC).



Crenes o v Bt Open theoretical problems ?

 Robustness to hyper-parameters tuning

« Large scale systems and high dimensional systems,
e.g., PDE models, delays

 Robustness and safety (state/input constraints) of
ML algorithms from control theory perspective (e.g.,
stability and robustness of (CS-)RL algorithms using
dynamical systems theory tools, neural ODEs from
dynamical systems perspective (useful/scalable ?))

« Sampling efficiency/data constraints

* Real-time computational constraints

* CS: Computer science, RL: Reinforcement learning, ODEs: Ordinary diff. equations, PDEs: Partial diff. equations
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Part Il: Examples

Benelux Meeting on Systems and Control 2022
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Mechatronics Examples: Electromagnetic
brakes*

Left-side electromagnet

/1/ Armature
f"-/

(py—

. Spring
Actuated object Spring

Sp;‘ing \I\ 1\
\

Right-side electromagnet
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*
brakes coi
R Rubber
cushion
{Damping
varies by the
/ temperature)
A
_{— Electromagnetic
_/  actuator
ME Trajectory | Element Cur;te(r;; measurement
generation (ME) v
x (), x,,(£) ME States Estimation
y ™ " _ x(1) = F(x(2), I(1))
Nonlinear model le:(t;r)mol voltage |  4(ry=[£,(1). %,
based feed-forward
uy (1)
Y Y

Nonlinear controller
u(t)=ug(?)+Sug(¥)+ K (X, — X,9)+_ <
Ky(X,— %g)+Non _ln_com(x,.K _nin)

A
Sity. K, K, K

a

Extremum seeking <

Learning algorithm ,
cos t = Q1(%, — X5} +Q2(%, — %)

010250

* Benosman M., Atink G., 2015, Extremum seeking-based nonlinear control for electromagnetic actuators,
International Journal of Control, 88(3), 517-530.
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Mechatronics Examples: Electromagnetic
brakes

measurements

A

o (0 (0., ()

=4

Coil control voltage measurements

u(t)

Parameters
estimates




Mechatronics Examples: Electromagnetic
brakes

- Mechanical part
a

..:k . _0.5 2_ .
mXx = k(x, x)\ (b+x)2l }77x Ja
|
_ EMF
- Electrical part
u=Ri+L(x)di— a 2l,a’x, L(x) = a
dt\(a+x) dt | b+x

|
Back EMF




LA

Changes for the Better

Mechatronics Examples: Electromagnetic

brakes
d’z B da
m%Z% = k(xo — ) — 03 2(b+m)2 - £y
= | a di al
u= I+ 53 (bt )th70<x<xf>
=z 29 23] =g & 4"
2:’1 = 29
; k Ui a o Jd
22 = E(l’o 21) mZQ 2m(b+21)223 T -
R 2 U
Z3 = — a Z3—|—b 2 DF = (2)
b+zq —I—Zl b+z1

21 (t0) = 21> 2 f(tf) = Rl
Bt = () =
=) =10



M ECTRiG | Mechatronics Examples: Electromagnetic
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mem)  assuming uncertainties

== the spring constant £
=» damping coetficient 7
= the additive disturbance f,

U;ss Based on (i)ISS back-stepping approach

.tf

) = / L) -a() ) st [ ga(ealo)-5 (5)ds

0

—
=) the cost function
Q(A
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Changes for the Better brakes
:> ]%(t) =i ernaal T ék(t)
(t) — Nnominal T A7}(t)
fd(t) fd nominal Afd( )

2k +1) =2k ) + artrsin(wik ty + 5)Q
Ap(k' +1) = 2K + 1) + apsin(wik't; — T),
ok +1) =2, (k) + aytssin(wyk t; + 5)Q
An(k' + 1) = azn(k/ + 1) + ansz’n(wnk’tf = 5l
v, (k +1) = a5, (k) +agtpsin(wek ty +5)Q

A

Afd(k/ + 1) = :de(k/ +1) + CLde?;n(Cdek,tf s o)
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brakes

An = —0.7 Afg=-17.5

Ak

|

|
=~
&

- 0 r . .

8H ‘ : : :

7| L R S e -
o
= 6_..
o
8 5_
[
a 4_
2
O 3_v -

2, .|

1 ]

20 40 60 80 100 =5 i i i i i
Number of iterations 0 1000 2000 3000 4000 5000 6000
Number of iterations
0 ! !
0 : ; Al ‘ '
-0.2
=2}
QLG
=3}
-0.6

: ; ‘ ] ‘ 0 1000 20I00 30|00 4060 5600 6000
0 1000 2000 3000 4000 5000 6000 P f
Number of iterations Number of iterations
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IXh — —4.5, A?] — ). Afd = —7.9

T T T 2 T T T T
0:8 : D, —=v w/o ESC
....... Vref
0.7 5 b —v w ESC
1-5 A.AA..A..A..AA.AA.E AAAAAAAAAAAAA - AAAAAAAAAAAAAAAAAAAA .................. : ...................
06 - : PP :
: N N I e D M Y A
=0.5 £
= =
K] 2
o (4]
0.3 =
0 ..: ............................................................................................
0.2 [
010 ; : L _0-5 1 1 1 1

& Memoll 8 1 with labels
File Edit View T Tracks \nalyze Help

5— . i et pr. o .. [ [ma@mufun] o]~] &] =lol2]o]
_) _) _) _) _) ‘) M > 36 24 42 0 P 36 24 -i2 0| p[i g ... ][] vme ~ | 49 [Speakers (Realtek High [ ~ | J®|Microphone (Realtek Hig ~ | 2 (Stereo) Inp ~ |||
=1 . . a5 . N 1200 5 . i1 p . 230 - . 18 ? N Z00 N . 215 . . 220 N . =4S

“|Project Rate (Hz): @ End ) Length Audio Position:

- 44100 ~ SnapTo-__I_

Click and drag to select audio Actual Rate: 44100
— fo— ~ -
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Mechatronics Examples: Electromagnetic

brakes
dQJJa L ] 4 ai?
m=gat = k(o — ra) — 1 2(b+xq)>
L a di ai d
u=Ri+ sl (a2 db 0< za <y,

Trer a desired armature position trajectory, s.t.

x’ref(o) —= 07 x?é’f(tf) = If, x"é’f(o) — 07 jj"’ef(tf) =0

bounded parametric uncertainties

= spring cecfficient kb = kiomsnai +0k; |[0k| £ 6kmaz
—the damplng coefficient 1 = 7777,0777,inal+577, |577| - 577ma:r,
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brakes

:> Passive robust controller:

- m(b+zg) Knominal - Nnominal F» Riz
U = 1 (’US £ m Ta + m La (b+xq)m )—I_
'rn(b—l—:l?a) oV ok , E 572771&:7: ¥
7 0z3 k( %w |CIZ‘a| + m |CI§'a|), k>0

Vs = ayep (8) + Ka(aa — 2,0 (1) + Ka(za — 2,0 (1))
—I—K1(CIZQ — Cl?ref(t)), J I EE 0.4 = 1;2.9.

V=2I'Pz, P>0 Pf:l—i—jT = —1,

) 0 1 0
A=l ® T T |.
Ky Ky Kj

where K1, Ko, K3 are chosen such that A is Hurwitz.
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=) Learning-based auto-tuning of the controller gains:

Q(2(8)) = Crz1(Its)* + Caza(Its)? + Cazs(Its)?,

I = 1,2, 3... s the number of iterations, C'1, C> > 0, C3 > 0,

B = (6K1, 6Ko, 6K3, k),
= K1nominal + 0 K4

Ky = Kgnominal + 0K

= Kgnominal + 0 K3

k = knominat + 0k,
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Learning-based auto-tuning of the controller gains:

ey =argsinlent — 5 )JO(z(6))

0K1(t) = zx, (t) + ak, sin(wit + J)

LK, = aK,sin(wat — Z)Q(2(8))

5K2(t) = Tk, (t) + aK,sin(wat + 5)

LKy = ak,sin(wst — 5)Q(2(8))

5K3(t) = TK,(t) + ar,sin(wst + %)

T = arsin(wst — 2)Q(2(5))

5/}(15) = T (t) + arsin(wst + )

Sty =8I = Vs, (=1t Ity
Jeed 12000 I'= g 20k

Sk(t) = 5,1}(([ —1ytz), (I — 1) €t fls, T =1,2,3...
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—Reference : ‘ ' ; i : —re_tirtlance' 1
== \ith learning 1 =with learning

- |===no learnin
= = =No learning : 9

o
©
T

S
=y
T

o
w
°
o
4

o
S
T

Armature position [mm)]
o
()

°
—r

Armature velocity [mm/sec]
o
N

1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Time [sec] Time [sec]

0.7 ! : : :

0.6

Cost Function
© o o
w =Y [4;]

o°
n

| SRS

0 ; ; ;
40 60 80 100
Number of lterations [-]
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et brakes

-400 -100 : ! ) :

-500

-600

-700

-800

-900

i 40 60
) i i i Number of Iterations [-]

20 40 60 80 100

Number of Iterations [-] 1.1 j ; ; ;

1 1 i
0 20 40 60 80 100
Number of Iterations [-]

1 1
20 40 60 80 100
Number of Iterations [-]
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flexible shaft

The example studied here 1s about the angular position control of

a load connected by a flexible shaft to a voltage actuated DC servo
motor.

I:> The states: the load angle,angular rate, the motor angle and angular rate
:> The input is the motor voltage

:> The outputs: the load angle and the torque acting on the flexible shaft

|:> uncertainties 63; = —70, [Nms/rad], §.J; = —0.2, [kgm?]

* M. Benosman, 2016, Learning-based adaptive control: An extremum seeking approach-Theory and
Applications, Elsevier.
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Mechatronics Examples: DC- Servo motor with
flexible shaft

|:> uncertainties 68, = —70, [Nms/rad], §J, = —0.2, [k’g"’nQ]
Ji = 25kgm?, 3, = 25Nms/rad,

Cost function [-]

20 40 60 80 100
Number of iterations

581 []

1041 H:

........................................................................................

10 20 30 40 50
Number of iterations
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Mechatronics Examples: DC- Servo motor with

flexible shaft

:> uncertainties 63; = —70, [Nms/rad|, 6.J;, = —0.2, [/%’QWQ]

=

25kgm?, 3; = 25Nms/rad,

T

T T T T T T

............................................................................

50 60
Number of iterations
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flexible shaft

|:> uncertainties 63; = —70, [Nms/rad], §.J; = —0.2, [kgm?]
Ji = 25kgm?, 3, = 25Nms/rad,

Load angle
position [rad]
Load angle
position [rad]
(=]

- ,
10 20 30 40 50 60 70 80 90 100

-5 . : .
0 10 2 30 40 50 60 70 80 % 100

]
)
o

time [sec] time [sec]
'E 100.—;:.....E...;;';:.........i.......‘........E.......-‘.......‘.......i.......E..... 'E 200_....;..;...; ..E....E....,.E....:..;..I
A ' : ; <2 R aRnn T T Y T .
§e ope 25 o
< - T B S LN TN e —— I (TRSL J . s 5 5 ; : 5 i 5 f f 5
2100 1|0 ;0 3Tg 4; 5|0 ;[) 710 gl(.) glo 1(Im e ™ 0 % % % ' % % % % % 70
time [sec] time [sec]
500_.......:..............,........:,
S 32
52 W £8 o i
0% oo ' ; ; i i ' i : R 1|o zlo 3|o 4|o 5|0 elo 7|o slo glo 1(|)0
10 20 30 40 50 60 70 80 90 time [sec]

time [sec]

Uncertain case- learning MPC Uncertain case- nominal MPC
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Hygiene applications: non-optimal vs optimal HVAC airflow to flush
the virus out of the built environment i .
Concertation of virus as a

@ Fluid dynamics applications
Motivation

U.S. residential sector electricity

Efficient energy management in buildings consumption by major end uses, 2018
* HVAC (Heating, Ventilation, and Air Conditioning)

Figures courtesy of
Shumon Koga@ UCSD,
from his presentation at
ACC 2019.

Source : U.S. Energy Information Administration, Annual Energy Outlook 2019.

space cooling
14.7%

Optimizing HVAC performance is linked to
modelling/controlling temperature and airflow in the

room lighting
6.2%
Figures courtesy of Q rc‘;‘;‘g“?‘? Er'::n_ refngerators
Saleh Nabi @ MERL, e o A and freezers éia
from his presentation at hores i 7.3%
APS DFD 2018, ;’ / Um, in Lo et. al 2010: Open office plan with occupied and unoccupied regions. 10-15% Less Energy Use
InIet velocity, ¢

temperature

region of interest Unoccupied

Heat Source f; Region

fypction of time

= non-optimal

Non-optimal — optimal

optimal

How can we model airflow and temperature in a room with models that are
precise and computationally trackable for real-time estimation and control ?
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The Coupled Burgers’ Equation’

we(t,z) + w(t,x)we(t,x) = pwe(t,z)— kT(t,x),
LGt z)tuwld =)t x) = gl 2)+.10.2).

Where w is the velocity variable, T" is the temperature variable, f is s a

forcing disturbance function, p = Ri, where 7, is the Reynolds number, ¢

€
is the thermal conductivity, and x is the thermal expansion coefficient. The
notations F,. F,. stand for first and second partial derivatives of F' w.r.t. =z,
respectively. The forcing f is assumed to be at least L? in space and time.
w(t,0) = wr, %i” = WR,
T(t,0)=TL, T(t1)=Tr, wr, wr, Tr,Tr are positive constants.

The initial condition for the velocity is given by
w(0, x) = wo(x) e L*([0,1])
and the initial condition for the temperature is

(0. )= Talc) e L*([0,1]) .

* Benosman M., Borggaard J., San O., Kramer, B., 2017, Learning-based robust stabilization for reduced order models
of 2D and 3D Boussinesq equations, Applied Mathematical Modelling, Vol. 49, 162-181.
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The Coupled Burgers’ Equation

Following a Galerkin projection onto the subspace spanned by the POD basis functions,

the coupled Burgers™ equation is reduced to a POD ROM with the following structure

(ju; o T
. =Bi+uBs+puD g+ Dg+ Cqq”,
qr
"wﬁOd(Iv t) = way(T) + Zz | Owi(T)qui(t),
TIII,)Od(I? IL) — T(ll ( ) 'y Zz— OTI ( £ >QT'I'. (T)

in the form

- - - T
F = By + uBy + DgP® + CgPeqPo?
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The Coupled Burgers’ Equation

which can be upper-bounded by

ﬁ S blmam 25 ,U-'ma.:anmQI 5 (Zma.zerqudH 5 C'm.aa:qu()dHQa

\Yllele HBl—i_ABl“F S b]-rnaar:* "B2+ABQ||F S bgma;r’ ll S ll'ma'l” |
dpmaz, and |C + AC||F < ¢has-
This leads to the nonlinear closure model

D+ADl||p <

Hyi = pini (01,00 +Hmazb2,ap +Amas | qud [ +Crmaz || (IpOd | : )diag(dyy, ..., deodeod )qud

Compete reduced order model

4(t) = F(q(t),p) + H(t, q(1)).
H — Hnl
U —> Hel = [ + Ue,
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The Coupled Burgers’ Equation

m==) boundary conditions wr, = wr = 0, T, = Tr = 0,

[a—

,ifz € [0, 0.5]

{ 0, if z €]0.5, 1],

-

if z € [0, 0.5]
0, if z €]0.5, 1],

(z,0)
T(z.0)
me=) Learning cost

Qr)= Q1 /0
H= (Neaﬂnl)T

G/T o T’,I - T,]-l . e»w — llﬂn - ll‘g

ty ty
< CT...ET >‘X' (hL -+ QQ/ = €wsCw >‘,\' dt_, Q]. = Q2 — 1
0

O. San and T. Iliescu. “Proper orthogonal decomposition closure
models for fllid flows: Burgers equation.” International Journal of
Numerical Analvis and Modeling. vol. 1. no. 1. pp. 1-18. 2013.



o My Fluid dynamics applications:
The Coupled Burgers’ Equation

Temperature- True

Changes for the Better

Velocity- True

T(tx)

T(t,x)

5 ' With 10 PODs
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The Coupled Burgers’ Equation

Velocity error- No learning Temperature error- No learning

= <

¥ =

< 5 0.1

S S

0 L 0
0.1
0.2

Error between ROM and systems’ measurements before learning
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4000

3000

Cost function

2000

1000

Fluid dynamics applications:

The Coupled Burgers’ Equation

...................................................................

...................................................................

20 40 60
Iterations [-]

e
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CI’\'{-L“%}" Fluid dynamics applications:
The Coupled Burgers’ Equation

Temperature- POD ROM- No learning

Velocity- POD ROM- No learning

T(t,x)

wit,x)

With 10 PODs




o My Fluid dynamics applications:

Changes for the Better

Velocity error- With learning

=
o

o
o

Error on w(t,x)

1
— e
'

The Coupled Burgers’ Equation

Temperature error- With learning

- 0.15
0k 0.1
e R 7 005
B’ : o )
5 g | 10,05
102 £ .02 e |
- 0.1
o 0.4 Wiy ]
o - 1 - o
0.5 \‘\\\ f_f__,-ff”“;& 0.6 0.5 i ”"’;‘ 5 0.2
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Error between ROM and systems’ measurements after learning
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3D

The 3D Boussinesq Equation

incompressible Boussinesq equations

(ﬁ—i-v Vv) =-Vp+V . 7(v)+pg

o,
Y-v=8
PCp (%—i—V-VT) =V(HVT),

T(v) = pv (Vv +VvT)

POD ROM with the following structure,

qpod = 1 D qPod e, podqpodT 8 PqPOdqpodT.’
v(z,t) = vo(z) + Zz_ e @(l)?‘?Od;qu?Od:ivg)?
T(z,t) = To(a) + iy """ o()f™ " a7 (1)



o My Fluid dynamics applications:

Changes for the Better

The 3D Boussinesq Equation

~

in the form ¢ (t) = F(qpéi(f;_),#-) = F(¢™(t)) + p Dg**
(e m— e D),

d dT i i i
F ( qPO po + quOd POd ; C,Pa!re.kept separate to track the impact of different physical
uncertainties on the ROM

If we consider bounded parametric uncertainties on the coefficients of ' and P.

F ((Y—{—ACV)QPOd pod (P+AP) pod podT

where |C + AC||F < Cmaz, and |P + AP||F < pmaz,

F < cmaalld™? + Pmaa 4"

This leads to the nonlinear closure model

pod”?

Hu = /Ln,l(crnaa?”q +pma.13H(] Od” ) diag(diy, .. ([Npod’Vpod) "%, pnr >0

U —> Hel = [+ e,

t t
Learning cost Q(p) =/f(eT,eT)Hdt+ff(e\,,e\,)m)sdt.
0 0
p= (e, pnl)”
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Numerical Results: The 3D Boussinesq Equation (Rayleigh-
Benard modified problem)

Temperature
294.14999

Temperature

204,14999

204
293.8
293.6

1203.4
203.2
203.14999

204
293.8
293.6

203.4
£293.2
293.14999

Exact temperature at tO Exact temperature at t=50sec

temperature was specified at 0.5 on the x-faces and
taken as homogeneous Neumann on the remaining faces. 3D flow video

Re = 4.964 x 10*, Pr = 0.712, and Gr = 7.369 x 107
The simulation was run from zero velocity and
temperature and snapshots were collected for 78 seconds.
In this case we use 8PODs for the Galerkin ROM (ROM-G) Temperatu re flow
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Numerical Results: The 3D Boussinesq Equation
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Numerical Results: The 3D Boussinesq Equation (Rayleigh-

Benard modified problem)

Velocity_ ROMG Magnitude
0.06963

0.06

0.04
0.02

0

ROM-G velocity clip no
learning at t=50 sec

Velocity_ ROMG Magnitude
0.0617888
0.06

0.04

[0.02

0

ROM-G velocity clip with

learning at t=50 sec

Velocity Magnitude
0.059538

0.04

o True velocity clip

at t=50 sec

0



Numerical Results: The 3D Boussinesq Equation

Velocity_error Magnitude Velocity_error Magnitude

0.0204717
o0

0.02

0.01
, 0.01

0 0

Clip of the velocity error at Clip of the velocity error at
t=50 sec. t=50 sec.
ROM-G (no learning-8 PODs) ROM-GL (with learning-8 PODs)
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Numerical Results: The 2D Boussinesq Equation- Unsteady
lock exchange flow problem

Temperature controur (exact solution at t=0,02 [sec]) Temperature controur (exact solution at t=8 [sec])

2D flow video
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Numerical Results: The 2D Boussinesq Equation- Unsteady
lock-exchange flow problem

12000

100000 ------ee-eeeee .................... . ....................

B s S R L LT LLLLLLTE R

Cost function

0 50 100 150
Iterations [-]

Temperature error contour (ROM=G)
B 3 \"ul‘-;\‘j ’n U B

el o P

e
-

S !//Z“
(2

1 L 1 )
-250 -200 -150 =100 =50 O —80 —60 —40 —20 0

Reconstruction error ROM-G (no learning) Reconstruction error ROM-G (with learning)



Robotics examples: Rigid
manipulators’

We consider here a two-link robot manipulator.
H(q)i+C(q,9)d + Glg) = T,
where ¢ £ [q1.¢2]" denote the two joint angles

A

and 7 = [, 7] denote the two joint inputs.

Now we assume uncertainties in the model

i = H ' (¢)r —H ' (¢)[C(q,4)d + G(q)] + Ab(g, )

* Benosman M., Farahmand A.-M., Xia M., 2018, Learning-based iterative modular adaptive control for nonlinear systems,
International Journal of Adaptive Control and Signal Processing, 33(2), pp. 335-355, doi.org/10.1002/acs.2892.
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mw=) The reference trajectory

(1) - = .3
1d — 9 L = ,
. 1+ exp (—1)

mmmm)  The extremum seeking algorithm

T;(k+1) = z;(k) + tpa;/w; cos(w;t k)
— trRi/Wi sin(witfk)J, = Iy .2



o' MR Robotics examples: Rigid
manipulators

Case 1 : Ab = [Ab(t),Aby(t)]!

Abi(t) = 1—0.14 sin(0.01 t),
Abs(t) = 1—0.12 cos(0.01 t).

===) the cost function

Nty
g =) / G — Qd)T(q — qq)dt
(N—1)ty

-Ntf
& @5 / (G — 42)T (¢ — ga)d,

BNy

Q1 >0,Qy>0and N =1, 2, ---
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Robotics examples: Rigid
manipulators

Case 1 : Ab = [Abi(t), Aby(t)]

0.8

0.6

0.4

0.2

position p1

m— dosired trajctory
with learning
= \Vithout learning

0 0.5 1 1.5 2 2.5 3 3.5 4

velocity v1

= desired velocity
with learning
without learning

i i i i i ; e
0 0.5 1 1.5 2 2:5 3 3.5 4

time
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Case 1

30

Robotics examples: Rigid

manipulators

Ab

cost function

25 ............ .............................................................
(1| S .............................................................
15k ............................................................
O | .............................................................

| ey ............................................................

0 L =3 H H e 25

0 200 400 600 800 1000 1200
iteration

[Aby (), Aby(t)]"

estimate for Deltab1(t)

T T T T T
estimate using ESA
""""""""""""""""""""" e U Detltab, (1) i
i i i i |
0 200 400 600 800 1000 1200

estimate for Deltabz(t)

estimate using ESA
"""""" true Deltab,(t) 7
0 200 400 600 800 1000 1200

iterations



SUEEM  Robotics examples: Rigid
manipulators
Case 2: Ab(q.t) = A(t) x (Dq)
Aby(t) = —1—0.04 sin(0.24 ¢),
Aby(t) = —2—0.13 sin(0.17 ¢).

Changes for the Better

1

0.8

0.6

0.4

0.4

0.3

0.2

0.1

position p1

E—

= desired trajctory | |
with learning
m—— yithout learning

0 0.5 1 1.5 2 2.5 3 3.5 4
velocity v1
e dosired velocity
R e with learning
: : e \Vithout learning
0 0.5 1 15 2 2.5 3 3.5 4
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Robotics examples: Rigid
manipulators
Case 2: Ab(q,l‘.) = A(l‘.) X (Dq)

estimate for Deltab1 (t)
cost function

12 0 T
estimate using ESA
s trUE€ Deltab ! (t)
! : : OB
10 ,.,.,,,..,,..,...,E...,,...,..,,...,.E .................. I ..................
8 ........................................................................
: i i i
0 50 100 150 200
6 """"""""" """"""""" estimate for Deltab,(t)
' 0 .
: : : : : m—— ostimate using ESA
4 R R L i R R i R R R x :
: j : P . N S true Deltab,(t)
2.. ........................................................................
0 i j j : i i
0 50 100 150 200 0 50 100 150 200

iteration
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Maze mounted on a servo-motor’

Slide from: Vetro A @MERL, keynote at IEEE Conference on Autonomous Systems (ICAS), 2021.

Circular Maze Environment (CME)

 Tip and Tilt the maze so that the marble moves from the
outer ring into the inner-most circle

* Intuitive to humans; most humans can solve very quickly

« Complex for RL agent due to constrained geometry,
underactuated control, nonlinear dynamics, etc.

sim-to-real

-
Lasor

ee) | ¢
°° Sensor Challenges/Issues
N Different Physics
L : P Actuation Delays
.fe Observation Noise
Real o Compute Time Physics
System Domain Dependent Engine

* Ota, K., Jha, D.K., Romeres, D., van Baar, J., Smith, K., Semistsu, T., Oiki, T., Sullivan, A., Nikovski, D.N.,
Tenenbaum, J.B., 2021, Data-Efficient Learning for Complex and Real-Time Physical Problem Solving using
Augmented Simulation, IEEE Robotics and Automation Letters, DOI: 10.1109/LRA.2021.3068887, Vol. 6, No. 2,.
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Robotics applications :

Maze mounted on a servo-motor

Slide from: Vetro A @MERL, keynote at IEEE Conference on Autonomous Systems (ICAS), 2021.

Goal: obtain accurate model and exploit it for model-

based RL

1. Collect real trajectories X! ~ freal in the real system
2. Estimate physical parameters p* to obtain a more accurate physics engine
3. Learn residual model using Gaussian Process

4. Use the estimated model to control the real system with NMPC policy

Initial PE

sim __ £PE
X red,u

Fine-tuned PE
xsim f;'il::i "

Fine-tuned PE + GP
X5 ~ frod e +

Real System
Xreal ~ freal

1 i
Parameter GP
Estimation Regression

Real System

T

Estimated Model
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Robotics applications :
Maze mounted on a rigid arm

Slide from: Vetro A @MERL, keynote at IEEE Conference on Autonomous Systems (ICAS), 2021.

Experiments: Comparison with Human Performance

Human or

RL Agent
??

o
Agent ‘

v" Can move the marble to goal within
minutes of interaction

v Consistently improve performance with
larger amount of data

15 participants were asked to solve
the maze by looking at the video feed
of the marble movement

To familiarize them with the controls,
they were given 1 minute to play with
the maze using a joystick, but no
marble

Then, they were asked to solve the
maze five times
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Batteries estimation

= Wei C., Benosman M., Kim, T., 2019, Online Parameter Identification for State of Power Prediction of
Lithium-lon Batteries in Electric Vehicles Using Extremum Seeking, International Journal of Control,
Automation and Systems.

Gains auto-tuning for PV systems

= Wei C., Benosman M., 2016, Extremum Seeking-based Adaptive Voltage Control of Distribution Systems
with High PV Penetration, IEEE Innovative Smart Grid Technologies conference, Minneapolis.

Multi-robots source seeking and trajectory planning

= Poveda J.I., Benosman M., Teel A.R., Sanfelice R.G., 2021a, Robust Coordinated Hybrid Source Seeking
with Obstacle Avoidance in Multi-Vehicle Autonomous Systems, IEEE Transactions on Automatic Control,
10.1109/TAC.2021.3056365.

RF power amplifiers auto- tunning and automated
deS|g

Kantana, C., Ma, R., Benosman, M., Komatsuzaki, Y., Yamanaka, K., A Hybrid Heuristic Search Control
Assisted Optlmlzatlon of Dual- Input Doherty Power Ampllfler European Microwave Conference 2021

Other applications

= Cao, W,, Benosman, M., Zhang, X., Ma, R., Domain Knowledge-Based Automated Analog Circuit Design
with Deep Reinforcement Learnlng, AAAI Conference on Artificial Intelligence, February 2022 (nominated
for best paper award).

= Sun Y., Benosman M., Ma R., GaN Distributed RF Power Amplifer Automation Design with Deep
Reinforcement Learnlng, International Conference on Artificial Intelligence Circuits and Systems
(AICAS) 2022 (AICAS2022 open-edges paper award).



)‘Tﬁuzm What next?

Sentient meat by Terry Bisson'’s:
https://www.wnycstudios.org/podcasts/studio/segments/168264-
theyre-made-out-of-meat

Learning paradigms inspired from:
« Cognitive psychology (mind)
* Neuro-science and brain physiology (brain)

e.g., See the course ‘Brains, minds and machines’ summer
course: https://ocw.mit.edu/courses/res-9-003-brains-minds-
and-machines-summer-course-summer-
2015/pages/syllabus/course-instructors-guest-speakers-and-
icub-team/

mm) General Al ?!


https://www.google.com/search?sxsrf=ALiCzsbkOgzchOeTdpjAqTylDJDdqtcpNw:1657093395365&q=sentient+meat&spell=1&sa=X&ved=2ahUKEwjOycL54eP4AhWIP-wKHZP8BaIQkeECKAB6BAgBEDI
https://www.wnycstudios.org/podcasts/studio/segments/168264-theyre-made-out-of-meat
https://ocw.mit.edu/courses/res-9-003-brains-minds-and-machines-summer-course-summer-2015/pages/syllabus/course-instructors-guest-speakers-and-icub-team/
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http://www.merl.com
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