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Abstract

Local \belief propagation" rules of the sort proposed by Pearl [12] are guar-

anteed to converge to the correct posterior probabilities in singly connected

graphical models. Recently, a number of researchers have empirically demon-

strated good performance of \loopy belief propagation"{using these same rules

on graphs with loops. Perhaps the most dramatic instance is the near Shannon-

limit performance of \Turbo codes", whose decoding algorithm is equivalent to

loopy belief propagation.

Except for the case of graphs with a single loop, there has been little theo-

retical understanding of the performance of loopy propagation. Here we analyze

belief propagation in networks with arbitrary topologies when the nodes in the

graph describe jointly Gaussian random variables. We give an analytical for-

mula relating the true posterior probabilities with those calculated using loopy

propagation. We give su�cient conditions for convergence and show that when

belief propagation converges it gives the correct posterior means for all graph

topologies, not just networks with a single loop.

The related \max-product" belief propagation algorithm �nds the maximum

posterior probability estimate for singly connected networks. We show that,

even for non-Gaussian probability distributions, the convergence points of the

max-product algorithm in loopy networks are at least local maxima of the

posterior probability.

These results motivate using the powerful belief propagation algorithm in a

broader class of networks, and help clarify the empirical performance results.
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Abstract

Local \belief propagation" rules of the sort proposed by Pearl
[12] are guaranteed to converge to the correct posterior probabil-
ities in singly connected graphical models. Recently, a number
of researchers have empirically demonstrated good performance of
\loopy belief propagation"{using these same rules on graphs with
loops. Perhaps the most dramatic instance is the near Shannon-
limit performance of \Turbo codes", whose decoding algorithm is
equivalent to loopy belief propagation.

Except for the case of graphs with a single loop, there has been
little theoretical understanding of the performance of loopy propa-
gation. Here we analyze belief propagation in networks with arbi-
trary topologies when the nodes in the graph describe jointly Gaus-
sian random variables. We give an analytical formula relating the
true posterior probabilities with those calculated using loopy prop-
agation. We give su�cient conditions for convergence and show
that when belief propagation converges it gives the correct poste-
rior means for all graph topologies, not just networks with a single
loop.

The related \max-product" belief propagation algorithm �nds the
maximum posterior probability estimate for singly connected net-
works. We show that, even for non-Gaussian probability distri-
butions, the convergence points of the max-product algorithm in
loopy networks are at least local maxima of the posterior probabil-
ity. These results motivate using the powerful belief propagation
algorithm in a broader class of networks, and help clarify the em-
pirical performance results.

Problems involving probabilistic belief propagation arise in a wide variety of appli-
cations, including error correcting codes, speech recognition and medical diagnosis.
If the graph is singly connected then there exist local message-passing schemes to
calculate the posterior probability of an unobserved variable given the observed



variables. Pearl [12] derived such a scheme for singly connected Bayesian networks
and showed that this \belief propagation" algorithm is guaranteed to converge to
the correct posterior probabilities (or \beliefs").

Several groups have recently reported excellent experimental results by running al-
gorithms equivalent to Pearl's algorithm on networks with loops [6, 11, 5]. Perhaps
the most dramatic instance of this performance is for \Turbo code" [2] error correct-
ing codes. These codes have been described as \the most exciting and potentially
important development in coding theory in many years" [10] and have recently been
shown [8, 9] to utilize an algorithm equivalent to belief propagation in a network
with loops.

Progress in the analysis of loopy belief propagation has been made for the case of
networks with a single loop [15, 4, 1]. For these networks, it can be shown that
(1) unless all the compatabilities are deterministic, loopy belief propagation will
converge. (2) The di�erence between the loopy beliefs and the true beliefs is related
to the convergence rate of the messages | the faster the convergence the more
exact the approximation and (3) If the hidden nodes are binary, then the loopy
beliefs and the true beliefs are both maximized by the same assignments, although
the con�dence in that assignment is wrong for the loopy beliefs.

In this paper we analyze belief propagation in graphs of arbitrary topology, for nodes
describing jointly Gaussian random variables. We give an exact formula relating
the correct marginal posterior probabilities with the ones calculated using loopy
belief propagation. We show that if belief propagation converges, then it will give
the correct posterior means for all graph topologies, not just networks with a single
loop. We show that the covariance estimates will generally be incorrect but present
a relationship between the error in the covariance estimates and the convergence
speed. For Gaussian or non-Gaussian variables, we show that the \max-product"
algorithm, which calculates the MAP estimate in singly connected networks, only
converges to points that are at least local maxima of the posterior probability of
loopy networks.

1 Analysis

We focus on undirected graphical models with pairwise potentials (any graphical
model can be converted into this form before doing inference [15]). We assume each
node xi has a local observation yi. In each iteration of belief propagation, each
node xi sends a message to each neighboring xj that is based on the messages it
received from the other neighbors, its local observation yi and the pairwise potentials
	ij(xi; xj) and 	ii(xi; yi). We assume the message-passing occurs in parallel.

The idea behind the analysis is to build an unwrapped tree. The unwrapped tree
is the graphical model which belief propagation is solving exactly when one applies
the belief propagation rules in a loopy network [7, 17, 15]. It is constructed by
maintaining the same local neighborhood structure as the loopy network but nodes
are replicated so there are no loops. The potentials and the observations are repli-
cated from the loopy graph. Figure 1 (a) shows an unwrapped tree for the diamond
shaped graph in (b). By construction, the belief at the root node A is identical to
that at node A in the loopy graph after four iterations of belief propagation. Each
node has a shaded observed node attached to it, omitted here for clarity.

Because the loopy network represents jointly Gaussian variables, so will the un-
wrapped tree. We can use Gaussian marginalization formulae to calculate the true
mean and variances in both the loopy and the unwrapped networks. We assume
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Figure 1: Left: A Markov network with multiple loops. Right: The unwrapped
network corresponding to this structure. The unwrapped networks are constructed
by replicating the potentials and observations while preserving the local connectivity
of the loopy network. They are constructed so that the messages received by node A
after t iterations in the loopy network are equivalent to those that would be received
by A in the unwrapped network at convergence. An observed node, yi, not shown,
is connected to each depicted node.

that the joint mean is zero (the means can be added-in later). The joint distribu-

tion of z =

�
x
y

�
is given by P (z) = �e�

1

2
zTV z , where V =

�
Vxx Vxy
Vyx Vyy

�
. It is

straightforward to construct the inverse covariance matrix V of the joint gaussian
that describes a given gaussian graphical model [3].

Writing out the exponent of the joint and completing the square shows that the
mean � of x, given the observations y, is given by:

Vxx� = �Vxyy; (1)

and the covariance matrix Cxjy of x given y is: Cxjy = V �1
xx . We will denote by

Cxijy the ith row of Cxjy so the marginal posterior variance of xi given the data is

�2(i) = Cxijy(i).

We will use ~ for unwrapped quantities. We scan the tree in breadth �rst order and
denote by ~x the vector of values in the hidden nodes of the tree when scanned in
this fashion. Simlarly, we denote by ~y the observed nodes scanned in the same order
and ~Vxx; ~Vxy the inverse covariance matrices. Since we are scanning in breadth �rst
order the last nodes are the leaf nodes and we denote by L the number of leaf
nodes. By the nature of unwrapping, ~�(1) is the mean of the belief at node x

1
after

t iterations of loopy propagation, where t is the number of unwrappings. Similarly
~�2(1) = ~Cx1jy(1) is the variance of the belief at node x1 after t iterations.

Because the data is replicated we can write ~y = Oy where O(i; j) = 1 if ~yi is a
replica of yj and 0 otherwise. Since the potentials 	(xi; yi) are replicated, we can

write ~VxyO = OVxy. Since the 	(xi; xj) are also replicated and all non-leaf ~xi have

the same connectivity as the corresponding xi, we can write ~VxxO = OVxx + E
where E is zero in all but the last L rows. When these relationships between the
loopy and unwrapped inverse covariance matrices are substituted into the loopy
and unwrapped versions of equation 1, one obtains the following expression, true
for any iteration [16]:

~�(1) = �(1) + ~Cx1jye (2)

where e is a vector that is zero everywhere but the last L components (corresponding
to the leaf nodes). Our choice of the node for the root of the tree is arbitrary, so
this applies to all nodes of the loopy network. This formula relates, for any node



0 50 100 150 200 250 300 350
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

node

co
nd

. c
orr

ela
tio

n w
ith

 ro
ot

Figure 2: The conditional correlation between the root node and all other nodes in
the unwrapped tree of Fig. 1 after 15 iterations. Potentials were chosen randomly.
Nodes are presented in breadth �rst order so the last elements are the correlations
between the root node and the leaf nodes. We show that if this correlation goes to
zero, belief propagation converges and the loopy means are exact. Symbols plotted
with a star denote correlations with nodes that correspond to the node A in the
loopy graph. The sum of these correlations gives the correct variance of node A
while loopy propagation uses only the �rst correlation.

at each iteration, the means calculated by loopy belief propagation with the true
posterior means.

Similarly when the relationship between the loopy and unwrapped inverse covari-
ance matrices is substituted into the loopy and unwrapped de�nitions of Cxjy we
can relate the calculated marginalized covariances to the true ones [16]:

~�2(1) = �2(1) + ~Cx1jye1 �
~Cx1jye2 (3)

where e
1
is a vector that is zero everywhere but the last L components while e

2
is

equal to 1 for all nodes in the unwrapped tree that are replicas of x
1
except for ~x

1
.

All other components of e
2
are zero.

Figure 2 shows ~Cx1jy for the diamond network in Fig. 1. We generated random
potential functions and observations for the diamond network and calculated the
conditional correlations in the unwrapped network. Note that the conditional cor-
relation decreases with distance in the tree | we are scanning in breadth �rst order
so the last L components correspond to the leaf nodes. As the number of iterations
of loopy propagation is increased the size of the unwrapped tree increases and the
conditional correlation between the leaf nodes and the root node decreases.

From equations 2{3 it is clear that if the conditional correlation between the leaf
nodes and the root nodes are zero for all su�ciently large unwrappings then (1)
belief propagation converges (2) the means are exact and (3) the variances may
be incorrect. In practice the conditional correlations will not actually be equal
to zero for any �nite unwrapping. In [16] we give a more precise statement: if the
conditional correlation of the root node and the leaf nodes decreases rapidly enough
then (1) belief propagation converges (2) the means are exact and (3) the variances
may be incorrect.

How wrong will the variances be? The term ~Cx1jye2 in equation 3 is simply the

sum of many components of ~Cx1jy. Figure 2 shows these components. The correct



variance is the sum of all the components while the loopy variance approximates this
sum with the �rst (and dominant) term. Whenever there is a positive correlation
between the root node and other replicas of x

1
(e.g. �gure 2) the loopy variance is

strictly less than the true variance | the loopy estimate is overcon�dent.

Note that when the conditional correlation decreases rapidly to zero two things
happen. First, the convergence is faster (because ~Cx1jye1 approaches zero faster).

Second, the approximation error of the variances is smaller (because ~Cx1jye2 is
smaller). Thus we have shown, as in the single loop case, quick convergence is
correlated with good approximation.

1.1 Non-Gaussian variables

A related local algorithm, \max-product", �nds the MAP estimate for x at each
node of a singly connected network [12, 15]. As with belief propagation, one can
apply this to a loopy network. How does the result compare to the true MAP
result?

Since the posterior probability factorizes into a product of pairwise potentials, the
log posterior will have the form , logP =

P
ij Jij(xi; xj) + Jii(xi; yi). Assuming

the clique potential functions are di�erentiable and �nite, the MAP solution, x�

will satisfy @
@xi

logP jx=x� = 0, a coupled set of vector equations. Let j and k

denote nodes in the region of convergence of the unwrapped network which both
refer to the same node of the loopy network. Then ~x�j = ~x�k [15] and we can write

Jij(~x
�
i ; ~x

�
j ) = Jij(~x

�
i ; ~x

�

k). This changes the coupling of the equations for x� for
unwrapped nodes in the region of convergence to match the coupling of the loopy
network's stationary point equations.

That manipulation allows the stationary point equations for the loopy network to
be written from the (larger) set of stationary point equations for the unwrapped
network. The same convergence substitution can be made with the second derivative
equations. Thus, the MAP solution of the unwrapped network also satis�es the
stationary point equations for the loopy network, and if the max-product algorithm
converges, it �nds at least a local maximum of the posterior probability of the loopy
network.

This result is not restricted to Gaussian variables. Since the mean is the maximum
for Gaussian variables, this result is another way to show that, when loopy belief
propagation converges, the means are correct for Gaussian graphical models.

2 Simulations

We ran belief propagation on the 25� 25 2D grid of Fig. 3 a. The joint probability
was:

P (x; y) = exp(�
X
ij

wij(xi � xj)
2

�

X
i

wii(xi � yi)
2) (4)

where wij = 0 if nodes xi; xj are not neighbors and 0:01 otherwise and wii was
randomly selected to be 0 or 1 for all i with probability of 1 set to 0:2. The obser-
vations yi were chosen randomly. This problem corresponds to an approximation
problem from sparse data where only 20% of the points are visible.

We found the exact posterior by solving equation 1. We also ran loopy belief
propagation and found that when it converged, the loopy means were identical to
the true means up to machine precision. Also, as predicted by the theory, the loopy
variances were too small | the loopy estimate was overcon�dent.
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Figure 3: (a) 25 � 25 graphical model for simulation. The unobserved nodes (un-
�lled) were connected to their four nearest neighbors and to an observation node
(�lled). (b) The error of the estimates of loopy propagation and successive over-
relaxation (SOR) as a function of iteration. Note that belief propagation converges
much faster than SOR.

In many applications, the solution of equation 1 by matrix inversion is intractable
and iterative methods are used. Figure 3 compares the error in the means as a func-
tion of iterations for loopy propagation and successive-over-relaxation (SOR) which
is considered one of the best relaxation methods [13]. Note that after essentially
�ve iterations loopy propagation gives the right answer while SOR requires many
more.

As expected by the fast convergence, the approximation error in the variances was
quite small. The median error was 0:018. For comparison the true variances ranged
from 0:01 to 0:94 with a mean of 0:322. Also, the nodes for which the approximation
error was worse were indeed the nodes that converged slower.

3 Discussion

Our main interest in the Gaussian case is to understand the performance of belief
propagation in general networks with multiple loops. We are struck by the similar-
ity of our analytical results for Gaussians in arbitrary networks and the analytical
results for single loops of arbitrary distributions, reported in [15]. First, in single
loop networks with binary nodes, loopy belief at a node and the true belief at a
node are maximized by the same assignment while the con�dence in that assign-
ment is incorrect. In Gaussian networks with multiple loops the mean at each node
is guaranteed to be correct but the con�dence around that mean may be incorrect.
Second, in single loop networks fast convergence is correlated with good approxima-
tion of the beliefs and this is also true for Gaussian networks with multiple loops.
Third, in Gaussians and in single loop discrete networks the factor that determines
the goodness of approximation and the convergence rate is the amount of statistical
indpendence between the root nodes and the leaf nodes.

Gaussians graphical models are quite di�erent than discrete models with arbitrary
potentials and a single loop. Mean �eld approximations are exact for Gaussian
MRFs while they work poorly in sparsely connected discrete networks with a single
loop (or even no loops) [14]. The common results for the Gaussian and single-loop



cases lead us to believe that these results may hold for a larger class of networks.

The sum-product and max-product belief propagation algorithms are appealing,
fast and easily parallelizable algorithms. Due to the well known hardness of prob-
abilistic inference in graphical models, belief propagation will obviously not work
for arbitrary networks and distributions. Nevertheless, there is a growing body of
empirical evidence showing its success in many loopy networks. Our results give
a theoretical justi�cation for applying belief propagation in certain networks with
multiple loops. This may enable fast, approximate probabilistic inference in a range
of new applications.
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