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Abstract

Graphical models, such as Bayesian networks and Markov Random Fields repre-

sent statistical dependencies of variables by a graph. Local \belief propagation"

rules of the sort proposed by Pearl (1988) are guaranteed to converge to the

correct posterior probabilities in singly connected graphical models. Recently,

a number of researchers have empirically demonstrated good performance of

\loopy belief propagation"{using these same rules on graphs with loops. Perhaps

the most dramatic instance is the near Shannon-limit performance of \Turbo

codes", whose decoding algorithm is equivalent to loopy belief propagation.

Except for the case of graphs with a single loop, there has been little theo-

retical understanding of the performance of loopy propagation. Here we analyze

belief propagation in networks with arbitrary topologies when the nodes in the

graph describe jointly Gaussian random variables. We give an analytical for-

mula relating the true posterior probabilities with those calculated using loopy

propagation. We give su�cient conditions for convergence and show that when

belief propagation converges it gives the correct posterior means for all graph

topologies, not just networks with a single loop.

The related \max-product" belief propagation algorithm �nds the maximum

posterior probability estimate for singly connected networks. We show that, even

for non-Gaussian probability distributions, the convergence points of the max-

product algorithm in loopy networks are at least local maxima of the posterior

probability.

These results motivate using the powerful belief propagation algorithm in a

broader class of networks, and help clarify the empirical performance results.
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Abstract

Graphical models, such as Bayesian networks and Markov random
�elds represent statistical dependencies of variables by a graph.
Local \belief propagation" rules of the sort proposed by Pearl [20]
are guaranteed to converge to the correct posterior probabilities
in singly connected graphs. Recently good performance has been
obtained by using these same rules on graphs with loops, a method
known as \loopy belief propagation". Perhaps the most dramatic
instance is the near Shannon-limit performance of \Turbo codes",
whose decoding algorithm is equivalent to loopy propagation.

Except for the case of graphs with a single loop, there has been little
theoretical understanding of loopy propagation. Here we analyze
belief propagation in networks with arbitrary topologies when the
nodes in the graph describe jointly Gaussian random variables. We
give an analytical formula relating the true posterior probabilities
with those calculated using loopy propagation. We give su�cient
conditions for convergence and show that when belief propagation
converges it gives the correct posterior means for all graph topolo-
gies, not just networks with a single loop.

The related \max-product" algorithm�nds the maximumposterior
probability estimate for singly connected networks. We show that,
even for non-Gaussian probability distributions, the �xed points
of the max-product algorithm in loopy networks are at least local
maxima of the posterior probability.

These results motivate using the powerful belief propagation algo-
rithm in a broader class of networks, and help clarify the empirical
performance results.
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Problems involving probabilistic belief propagation arise in a wide variety of appli-
cations, including error correcting codes, speech recognition and image understand-
ing. Typically, a probability distribution is assumed over a set of variables and
the task is to infer the values of the unobserved variables given the observed ones.
The assumed probability distribution is described using a graphical model [14] |
the qualitative aspects of the distribution are speci�ed by a graph structure. The
graph may either be directed as in a Bayesian network [20, 12] or undirected as in
a Markov Random Field [20, 11].

If the graph is singly connected (i.e. there is only one path between any two given
nodes) then there exist e�cient local message{passing schemes to calculate the
posterior probability of an unobserved variable given the observed variables. Pearl
(1988) derived such a scheme for singly connected Bayesian networks and showed
that this \belief propagation" algorithm is guaranteed to converge to the correct
posterior probabilities (or \beliefs"). However, as Pearl noted, the same algorithm
is not guaranteed to converge in multiply connected networks, and even if it does,
it will not calculate the correct beliefs [20].

Several groups have recently reported excellent experimental results by running al-
gorithms equivalent to Pearl's algorithm on networks with loops [9, 18, 7]. Perhaps
the most dramatic instance of this performance is in an error correcting code scheme
known as \Turbo codes" [3]. These codes have been described as \the most excit-
ing and potentially important development in coding theory in many years" [17]
and have recently been shown [13, 16] to utilize an algorithm equivalent to belief
propagation in a network with loops. Although there is widespread agreement in
the coding community that these codes \represent a genuine, and perhaps historic,
breakthrough" [17] a theoretical understanding of their performance has yet to be
achieved.

Progress in the analysis of loopy belief propagation has been made for the case of
networks with a single loop [23, 24, 6, 2]. For these networks, it can be shown that:

� Unless all the compatibilities are deterministic, loopy belief propagation
will converge.

� An analytic expression relates the correct marginals to the loopy marginals.
The approximation error is related to the convergence rate of the messages
| the faster the convergence the more exact the approximation.

� If the hidden nodes are binary, then the loopy beliefs and the true beliefs
are both maximized by the same assignments, although the con�dence in
that assignment is wrong for the loopy beliefs.

In this paper we analyze belief propagation in graphs of arbitrary topology but
focus primarily on nodes that describe jointly Gaussian random variables. We give
an exact formula that relates the correct marginal posterior probabilities with the
ones calculated using loopy belief propagation. We show that if belief propagation
converges then it will give the correct posterior means for all graph topologies, not
just networks with a single loop. The covariance estimates will generally be incorrect
but we present a relationship between the error in the covariance estimates and the
convergence speed. For Gaussian or non-Gaussian variables, we show that the
\max-product" algorithm, which calculates the MAP estimate in singly connected



networks, only converges to points that are at least local maxima of the posterior
probability of loopy networks. Our results motivate using this powerful algorithm
in a broader class of networks.

1 Belief propagation in undirected graphical models

Pearl's original algorithm was described for directed graphs, but in this paper we
focus on undirected graphs. Every directed graphical model can be transformed into
an undirected graphical model before doing inference (see �gure 1). An undirected
graphical model (or a Markov RandomField) is a graph in which the nodes represent
variables and arcs represents compatibility constraints between them. Assuming all
probabilities are nonzero, the Hammersley-Cli�ord theorem (e.g. [20]) guarantees
that the probability distribution will factorize into a product of functions of the
maximal cliques of the graph.

Denoting by x the values of all unobserved variables in the graph, the factorization
has the form:

P (x) =
Y
c

	c(xc) (1)

where xc is a subset of x that form a clique in the graph and 	c is the potential
function for the clique.

We will assume, without loss of generality, that each xi node has a corresponding
yi node that is connected only to xi.

Thus:

P (x; y) =
Y
c

	c(xc)
Y
i

	ii(xi; yi) (2)

The restriction that all the yi variables are observed and none of the xi variables
are is just to make the notation simple | 	ii(xi; yi) may be independent of yi
(equivalent to yi being unobserved) or 	ii(xi; yi) may be �(xi � xo) (equivalent to
xi being observed, with value xo).

In describing and analyzing belief propagation we assume the graphical model has
been preprocessed so that all the cliques consist of pairs of units. Any graphical
model can be converted into this form before doing inference through a suitable
clustering of nodes into large nodes [24]. Figure 1 shows an example | a Bayesian
network is converted into an MRF in which all the cliques are pairs of units.

Equation 2 becomes

P (x; y) =
Y
i;j

	ij(xi; xj)
Y
i

	ii(xi; yi) (3)

where the �rst product is over connected pairs of nodes.

By preprocessing the graph into one with pairwise cliques, the description and the
analysis of belief propagation becomes simpler. For completeness, we review the
belief propagation scheme used in [24].

At every iteration, each node sends a (di�erent) message to each of its neighbors
and receives a message from each neighbor. Let xi and xj be two neighboring nodes
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Figure 1: Any Bayesian network can be converted into an undirected graph with
pairwise cliques by adding cluster nodes for all parents that share a common child.
a. A Bayesian network. b. The corresponding undirected graph with pairwise
cliques. A cluster node for (B;C) has been added. The potentials can be set
so that the joint probability in the undirected network is identical to that in the
Bayesian network. In this case the update rules presented in this paper reduce to
Pearl's propagation rules in the original Bayesian network [24].



in the graph. We denote by mij(xj) the message that node xi sends to node xj , by
mii(xi) the message that yi sends to xi, and by bi(xi)) the belief at node xi.

The belief update (or \sum-product" update) rules are:

mij(xj)  �

Z
xi

	ij(xi; xj)mii(xi)
Y

xk2N(xi)nxj

mki(xi) (4)

bi(xi)  �mii(xi)
Y

xk2N(xi)

mki(xi) (5)

where � denotes a normalization constant and N (xi)nxj means all nodes neighbor-
ing xi, except xj .

The procedure is initialized with all message vectors set to constant functions.
Observed nodes do not receive messages and they always transmit the same vector|
if yi is observed to have value y� then mii(xi) = 	ii(xi; y�). The normalization of
mij in equation 4 is not necessary{whether or not the message are normalized,
the belief bi will be identical. However, normalizing the messages avoids numerical
under
ow and adds to the stability of the algorithm. We assume throughout this
paper that all nodes simultaneously update their messages in parallel.

It is easy to show that for singly connected graphs these updates will converge
in a number of iterations equal to the diameter of the graph and the beliefs are
guaranteed to give the correct posterior marginals: bi(xi) = Prob(Xi = xijY )
where Y denotes the set of observed variables.

This message passing scheme is equivalent to Pearl's belief propagation in directed

graphs of arbitrary clique size | for every message passed in this scheme there
exists a corresponding message in Pearl's algorithm when the directed graph is
converted to an undirected graph with pairwise cliques [24]. For particular graphs
with particular settings of the potentials, Equs. 4{5 yield other well-known Bayesian
inference algorithms, such as the forward-backward algorithm in Hidden Markov
Models, the Kalman Filter and even the Fast Fourier Transform [1, 13].

A related algorithm, \max-product", changes the integration in equation 4 to a
maximization. This message-passing is equivalent to Pearl's \belief revision" al-
gorithm in directed graphs. For particular graphs with particular settings of the
potentials, the max-product algorithm is equivalent to the Viterbi algorithm for
hidden Markov models, and concurrent dynamic programming. We de�ne the max-
product assignment at each node to be the value that maximizes its belief (assuming
a unique maximizing value exists). For singly connected graphs, the max-product
assignment is guaranteed to give the MAP assignment.

1.1 Gaussian Markov Random Fields

A Gaussian MRF (GMRF) is an MRF in which the joint distribution is Gaussian.
We assume, without loss of generality, that the joint mean is zero (the means can

be added-in later), so the joint distribution of z =

�
x

y

�
is given by:

Prob(z) = �e�
1

2
zTV z (6)



where � is a normalization constant and V has the following structure:

V =

�
Vxx Vxy
Vyx Vyy

�
(7)

It is straightforward to write the inverse covariance matrix describing the GMRF
which respects the statistical dependencies within the graphical model [4].

If the graph has been preprocessed such that the maximal cliques are pairwise cliques
then the joint distribution must have a representation as a product of pairwise
potentials. Thus there exist matrices Vij , one corresponding to each connected pair
of nodes and matrices Vii corresponding to each node such that:

Prob(z) = �
Y
i;j

e�
1

2
(xixj)Vij(xixj)

T
Y
i

e�
1

2
(xiyi)Vii(xiyi)

T

(8)

where the �rst product is again over connected pairs of nodes.

Note that the decomposition of V into Vij ; Vii is not unique. For scalar nodes, any
set of Vij ; Vii that satisfy the following constraints are valid:

Vxy(i; i) = Vii(1; 2) (9)

Vxx(i; j) = Vij(1; 2) (10)

Vxx(i; i) = Vii(1; 1) +
X

xj2N(xi)

Vij(1; 1) (11)

1.2 Exact inference in Gaussian MRFs

Writing out the exponent of Eq. 6 and completing the square shows that the mean
� of x, given y, is a solution to:

Vxx� = �Vxyy (12)

and the covariance matrix Cxjy of x given y is:

Cxjy = V �1
xx (13)

We will denote by Cxijy the ith row of Cxjy, so the marginal posterior variance of
xi, given the data, is Cxijy(i).

1.3 Belief Propagation for Gaussian MRFs

Belief propagation in Gaussian MRFs gives simpler update formulas than the gen-
eral case (Eqs. 4 and 5). The messages and the beliefs are all Gaussians and the
updates can be written directly in terms of the means and inverse covariance ma-
trices. Each node sends and receives a mean vector and inverse covariance matrix
to and from each neighbor, in general, each di�erent.

To explicitly write the updates in terms of means and covariances, we denote by �ij
the mean of the message that node xi sends to node xj and by Pij the precision or



inverse covariance matrix that node xi sends to node xj. Similarly, we denote by
�i the mean of the belief at node xi and by Pi the inverse covariance matrix of the
belief. As before, we use �ii; Pii for the message that yi sends to xi. We partition
the matrix Vij into

Vij =

�
a b

bT c

�
(14)

The message update rules are:

Pij  c� b(a+ P0)
�1bT (15)

�ij  �P�1
ij b(a+ P0)

�1P0�0 (16)

with:

P0 = Pii +
X

xk2N(xi)nxj

Pki (17)

�0 = P�1
0

0
@Pii�ii + X

xk2N(xi)nxj

Pki�ki

1
A (18)

The beliefs are given by:

Pi  Pii +
X

xk2N(xi)

Pki (19)

�i  P�1
i

0
@Pii�ii + X

xk2N(xi)

Pki�ki

1
A (20)

Pii; �ii are computed from equations 15 with �0 = y� and P0 =1I.

We can now state the main question of this paper. What is the relationship between
the true posterior means and covariances (calculated using Eq. 12) and the belief
propagation means and covariances (calculated using the belief propagation rules
Eqs. 15{20) ?

2 Dynamics of Belief Propagation

To compare the correct posteriors and the loopy beliefs, we construct an unwrapped
tree. The unwrapped tree is the graphical model that the loopy belief propagation
is solving exactly when applying the belief propagation rules in a loopy network
[10, 25, 24]. In error-correcting codes, the unwrapped tree is referred to as the
\computation tree" | it is based on the idea that the computation of a message
sent by a node at time t depends on messages it received from its neighbors at time
t � 1 and those messages depend on the messages the neighbors received at time
t� 2 etc.

To construct the topology of the unwrapped tree, set an arbitrary node, say x1, to
be the root node and then iterate the following procedure t times:
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Figure 2: Left: A Markov network with multiple loops. Right: The unwrapped
network corresponding to this structure. The unwrapped networks are constructed
by replicating the potentials 	ij(xi; xj) and observations yi while preserving the
local connectivity of the loopy network. They are constructed so that the messages
received by node A after t iterations in the loopy network are equivalent to those
that would be received by A in the unwrapped network. An observed node, yi, not
shown, is connected to each depicted node.

� Find all leaves of the tree (start with the root).

� For each leaf, �nd all k nodes in the loopy graph that neighbor the node
corresponding to this leaf.

� Add k � 1 nodes as children to each leaf, corresponding to all neighbors
except the parent node.

The potential matrices and observations for each node in the unwrapped network
are copied from the corresponding nodes in the loopy graph. Each node in the loopy
graph will have a di�erent unwrapped tree with that node at the root.

Figure 2 shows an unwrapped tree around node A for the diamond shaped graph
on the left. Each node has a shaded observed node attached to it that is not
shown for clarity. Since belief propagation is exact for the unwrapped tree, we can
calculate the beliefs in the unwrapped tree by using the marginalization formulae
for Gaussians.

We use ~ for unwrapped quantities. We scan the tree in breadth �rst order and
denote by ~x the vector of values in the hidden nodes of the tree when scanned in
this fashion. Similarly, we denote by ~y the observed nodes scanned in the same

order. As before, ~z =

�
~x
~y

�
To simplify the notation, we assume throughout this

section that all nodes are scalar valued. In section 4.2 we generalize the analysis to
vector valued nodes.

The basic idea behind our analysis is to relate the wrapped and unwrapped inverse
covariance matrices. From equation 11 all elements ~Vxy(i

0; j0) and ~y(i0) are copies of
the corresponding elements Vxy(i; j) and y(i) (where ~xi0 ; ~xj0 are replicas of xi,xj).

Also, all elements ~Vxx(i
0; j0) are copies of Vxx(i; j) and elements ~Vxx(i

0; i0) for non-
leaf nodes are replicas of Vxx(i; i). However, the elements ~Vxx(i

0; i0) for the leaf
nodes are not copies of Vxx(i; i) because the leaf nodes are missing some neighbors.

Intuitively, we might expect that if all the equations that ~� satis�es are copies of the



equations that � satis�es, then simply creating ~� by many copies of � would give a
valid solution in the unwrapped network. However, because some of the equations
are not copies, this intuition does not explain why the means are exact in Gaussian
networks.

An additional intuition, that we formalize below, is that the in
uence of the non-
copied equations (those at the leaf nodes) decreases with additional iterations. As
the number of iterations is increased, the distance between the leaf nodes and the
root node increases and their in
uence on the root node decreases. When their
in
uence goes to zero, the mean at the root node is exact.

Although the elements Vxx(i0; j0) are copies of Vxx(i; j) for the non-leaf nodes, the
matrix ~Vxx is not simply a block replication of Vxx. The system of equations that
de�nes ~� is a coupled system of equations. Hence the variance at the root node
~V �1
xx (1; 1) di�ers from the correct variance V �1

xx (1; 1).

In the following section we prove the following four claims regarding the dynamics
of loopy belief propagation in Gaussian graphical models.

Assume, without loss of generality, that the root node is x1. Let ~�(1) and ~�2(1) be
the conditional mean and variance at node 1 after t iterations of loopy propagation.
Let �(1) and �2(1) be the correct conditional mean and variance of node 1. Let
~Cx1jy be the conditional correlation of the root node with all other nodes in the
unwrapped tree then:

Claim 1:

~�(1) = �(1) + ~Cx1jyr (21)

where r is a vector that is zero everywhere but the last L components (corresponding
to the leaf nodes).

Claim 2:

~�2(1) = �2(1) + ~Cx1jyr1 �
~Cx1jyr2 (22)

where r1 is a vector that is zero everywhere but the last L components and r2 is
equal to 1 for all components corresponding to non-root nodes in the unwrapped
tree that reference x1. All other components of r2 are zero.

Claim 3: If the conditional correlation between the root node and the leaf nodes
decreases rapidly enough then (1) belief propagation converges (2) the belief prop-
agation means are exact and (3) the belief propagation variances are equal to the
correct variances minus the summed conditional correlations between ~x1 and all ~xj
that are replicas of x1.

Claim 4: Assume all Vij are diagonally dominant then: (1) belief propagation
converges (2) the belief propagation means are exact and (3) the belief propaga-
tion variances are equal to the correct variances minus the summed conditional
correlations between ~x1 and all ~xj that are replicas of x1.

To obtain intuition, Fig. 3 shows ~Cx1jy for the diamond �gure in Fig. 2. We gen-
erated random potential functions and observations for the loopy diamond �gure
and calculated the conditional correlations in the unwrapped network. Note that
the conditional correlation decreases with distance in the tree | we are scanning in
breadth �rst order so the last L components correspond to the leaf nodes. As the
number of iterations of loopy propagation is increased the size of the unwrapped
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Figure 3: The conditional correlation between the root node and all other nodes in
the unwrapped tree for the diamond �gure after 7 iterations. Potentials were chosen
randomly. Nodes are presented in breadth �rst order so the last elements are the
correlations between the root node and the leaf nodes. It can be proven that if this
correlation goes to zero then (1) belief propagation converges (2) the loopy means
are exact and (3) the loopy variances equal the correct variances minus the summed
conditional correlation of the root node and all other nodes that are replicas of the
same loopy node. Symbols plotted with a star denote correlations with nodes that
correspond to the node A in the loopy graph. It can be proven that the sum of
these correlations gives the correct variance of node A while loopy propagation uses
only the �rst correlation.

tree increases and the conditional correlation between the leaf nodes and the root
node decreases.

From equations 21{22 it is clear that if the conditional correlation between the leaf
nodes and the root nodes are zero for all su�ciently large unwrappings then (1)
belief propagation converges (2) the means are exact and (3) the belief propagation
variances are equal to the correct variances minus the summed conditional corre-
lations between ~x1 and all ~xj that are replicas of x1. In practice the conditional
correlations will not actually be equal to zero for any �nite unwrapping so claim 3
states this more precisely. Claim 4 gives su�cient conditions, in terms of the Vij
matrices for the conditional correlation to decrease rapidly enough.

How wrong will the variances be? The term ~Cx1jyr2 in Eq. 22 is simply the sum of

many components of ~Cx1jy. Figure 3 shows these components. The correct variance
is the sum of all the components while the loopy variance approximates this sum
with the �rst (and dominant) term.

Note that when the conditional correlation decreases rapidly to zero two things
happen. First, the convergence is faster (because ~Cx1jyr1 approaches zero faster).

Second, the approximation error of the variances is smaller (because ~Cx1jyr2 is
smaller). Thus, as in the single loop case, we �nd that quick convergence is corre-
lated with good approximation.



2.1 Relation of loopy and unwrapped quantities

The proof of the claims relies on the relationship between the elements of y; Vxy
and Vxx with their unwrapped quantities, described below.

Each node in ~x corresponds to a node in the original loopy network. Let O be a
matrix that de�nes this correspondence. O(i; j) = 1 if ~xi corresponds to xj and
zero otherwise. Thus, in �gure 2, ordering the nodes alphabetically, the �rst rows
of O are:

O =

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
: : : : : : : : : : : : : : :

1
CCCCCCCCCCCCCCCCA

(23)

Using O we can formalize the relationship between the unwrapped quantities and
the original ones. The simplest one is ~y, that only contains replicas of the original
y:

~y = Oy (24)

Since every xi is connected to a yi, Vxy and ~Vxy are zero everywhere but along their
diagonals (the block diagonals, for vector valued variables). The diagonal elements
of ~Vxy are simply replications of Vxy hence:

~VxyO = OVxy (25)

~Vxx also contains the elements of the original Vxx but here special care needs to
be taken. Note that by construction, every node in the interior of the unwrapped
tree has exactly the same statistical relationship with its neighbors as with the
corresponding node in the loopy graph. If a node in the loopy graph has k neighbors
then a node in the unwrapped tree will have, by construction, one parent and k� 1
children. The leaf nodes in the unwrapped tree, however, will be missing the k � 1
children and hence will not have the same number of neighbors. Thus, for all nodes
~xi; ~xj that are not leaf nodes, ~Vxx(i; j) is a copy of the corresponding Vxx(k; l),
where unwrapped nodes i and j refer to loopy nodes k and l, respectively.

Therefore:
~VxxO +E = OVxx (26)

where E is an error matrix. E is zero for all non-leaf nodes so the �rst N � L rows
of E are zero.

2.2 Proof of claim 1

The marginalization equation for the unwrapped problem gives:

~Vxx~� = �~Vxy~y (27)



Substituting Eqs. 24 and 25, relating loopy and unwrapped network quantities, into
Eq. 27, for the unwrapped posterior mean, gives:

~Vxx~� = �OVxyy (28)

For the true means, �, of the loopy network, we have

Vxx� = �Vxyy (29)

To relate that to the means of the unwrapped network, we left-multiply by O:

OVxx� = �OVxyy: (30)

Using Eq. 26, relating Vxx to ~Vxx, we have

~VxxO�+ E� = �OVxyy (31)

Comparing Eqs. 31 and 28 gives

~VxxO�+E� = ~Vxx~� (32)

or:
~� = O�+ ~V �1

xx E�: (33)

Using Eq. 13
~� = O�+ ~CxjyE�: (34)

The left and right hand sides of equation 34 are column vectors. We take the �rst
component of both sides and get:

~�(1) = �(1) + ~Cx1jyE� (35)

Since E is zero in the �rst N � L rows, E� is zero in the �rst N � L components.
2

2.3 Proof of claim 2

From Eq. 13,
VxxCxjy = I: (36)

Taking the �rst column of this equation gives:

VxxC
T
x1jy

= e1 (37)

where e1(1) = 1; e1(j > 1) = 0.

Using the same strategy as in the previous proof, we left multiply by O:

OVxxC
T
x1jy

= Oe1 (38)

and similarly we substitute equation 26:

~VxxOC
T
x1jy

+ECT
x1jy

= Oe1 (39)



The analog of equation 37 in the unwrapped problem is:

~Vxx ~C
T
x1jy

= ~e1 (40)

where ~e1(1) = 1; ~e1(j > 1) = 0.

Subtracting Eqs. 39 and 40 and rearranging terms gives:

~Cx1jy = OCT
x1jy

+ ~V �1
xx ECT

x1jy
+ ~V �1

xx (~e1 �Oe1) (41)

Again, we take the �rst row of both sides of equation 41 and use the fact that the
�rst row of ~V �1

xx is ~Cx1jy to obtain:

~�2(1) = �2(1) + ~Cx1jyEC
T
x1jy

+ ~Cx1jy(~e1 � Oe1) (42)

Again, since E is zero in the �rst NL rows, ECx1jy is zero in the �rst N � L

components. 2

2.4 Proof of claim 3

Here we need to de�ne what we mean by \rapidly enough". We restate the claim
precisely.

Suppose for every � there exists a t� such that for all t > t� j ~Cx1jyrj < �maxi jr(i)j
for any vector r that is nonzero only in the last L components (those corresponding

to the leaf nodes). In this case, (1) belief propagation converges (2) the means are

exact and (3) the variances are equal to the correct variances minus the summed

conditional correlations between ~x1 and all non-root ~xj that are replicas of x1

This claim follows from the �rst two claims. The only thing to show is that E�
and ECx1jy are bounded for all iterations. This is true because the rows of E are
bounded and �;Cx1jy do not depend on the iteration. 2

2.5 Proof of claim 4:

The proof is based on the following lemma1.

Conditional correlation lemma: Assume P (x; y) = �e�
1

2
zTV z with z; V as in equa-

tions 6{7. Let r be an arbitrary vector, then Cxjyr can be calculated by (1) modi-
fying the joint probability so that Vxy = �I (2) setting the observations y = r and
(3) calculating the posterior means of x given this y in the modi�ed joint.

Proof: This follows directly from equations 12,13. 2

Using this lemma, we can give su�cient conditions for convergence in terms of the
potentials of the loopy network.

Claim 4: Assume all Vij are diagonally dominant (i.e. jVij(k; l)j < Vij(k; k)) and
all Vii(1; 1) > 0 then: (1) belief propagation converges (2) the belief propagation
means are exact and (3) the belief propagation variances are equal to the correct
variances minus the summed conditional correlations between ~x1 and all ~xj that
are replicas of x1.

1We thank Andrew Ng for suggesting this proof.



Proof: The proof is based on claim 3 and the conditional correlation lemma. From
claim 3 we know that it is su�cient to show that for any � and r that is nonzero
only at the leaves, j ~Cx1jyrj < �maxi jr(i)j for su�ciently large unwrappings. By the

conditional correlation lemma, we know we can calculate j ~Cx1jyrj by constructing
an unwrapped tree with observations r and computing the conditional mean at
the root node. Since the unwrapped tree is singly-connected, we can calculate the
mean at the root node exactly by running belief propagation. We start by sending
messages from the leaf nodes to the layer above and continue sending messages
upwards until we reach the root node.

We use Ml to denote the maximum absolute value of means of all messages sent
upward by layer l. By equation 18 the value �0 calculated by all nodes at layer l�1
are a weighted average of means from the previous layer and the means from the
observations at layer l � 1. Since r is zero for all layers but the bottom one, the
means of the messages sent by observations at the l � 1 layer are zero. Thus:

j�0j �Ml (43)

If we rewrite equation 16 taking advantage of the fact that xi; xj are scalars we
have:

�ij =
�b(a+ P0)�1P0�0
c� b2(a+ P0)�1

(44)

Multiplying top and bottom by (a+P0)
P0

:

�ij =
�b

(ac� b2)=P0 + c
�0 (45)

Similarly, we can rewrite equation 15 taking advantage of xi; xj being scalar to give:

Pij =
ca� b2 + cP0

a+ P0
(46)

Note that for diagonally dominantmatrices, Pij is non-negative ifP0 is non-negative.
Note also that if Vii(1; 1) > 0for all the observation potentials, the observations will
send a positive precision to the unobserved nodes. Thus all precisions will be non-
negative.

Since Vij is diagonally dominant, and P0 is non-negative, both terms in the denom-
inator of equation 45 are non-negative so:

j�ijj �
jbj

jcj
j�0j (47)

We now denote by � = maxi;j jVij(1; 2)=Vij(2; 2)j. Since all Vij are diagonally
dominant, � < 1. Combining equations 43,47 gives:

Ml�1 � �Ml (48)

So for any � if we choose t� >
log �
log �

then j ~Cx1jyrj < �max jr(i)j. 2.

The conditional correlation lemma can also be used to give bounds on the loopy
variances. For example:



Corollary: If Vij are diagonally dominant and the o�-diagonal elements are negative
then the loopy beliefs are overcon�dent ~�2(1) < �2(1).

Proof: By the conditional correlation lemma we can calculate ~Cx1jyr2 by setting
the observations to be one at all copies of the root node and zero elsewhere. From
equation 45 it is clear that when b < 0 and the observations are zero or one, the
mean messages are weighted averages of positive values hence the mean at the root
will be positive. 2

As we discussed in section 1 the decomposition of a Gaussian MRF into Vij; Vii is
not unique. The following lemma shows that even when we have a loopy graph
where Vij are not diagonally dominant, belief propagation will still converge when
there exists a reparameterization using diagonally dominant matrices.

Reparameterization Lemma: If the unwrapped tree for any iteration of loopy prop-
agation can be parameterized so that ~Vij are diagonally dominant and ~Vii(1; 1) > 0
then (1) belief propagation converges (2) the belief propagation means are exact
and (3) the belief propagation variances are equal to the correct variances minus
the summed conditional correlations between ~x1 and all ~xj that are replicas of x1.

Proof: This follows from the proof of claim 4. Since the unwrapped tree is singly
connected, belief propagation using any parameterization is exact. So we can cal-
culate ~Cx1jyr by running belief propagation on the reparameterized tree in which
all the matrices are diagonally dominant. 2

We emphasize that claim 4 only gives su�cient conditions for convergence. It is
easy to construct networks in which Vij are not all diagonally dominant but loopy
belief propagation still converges. In section we show an example.

3 Fixed points of loopy propagation

Each iteration of belief propagation can be thought of as an operator F that inputs
a list of messages m(t) and outputs a list of messages m(t+1) = Fm(t). Thus belief
propagation can be thought of as an iterative way of �nding a solution to the �xed
point equations Fm = m with an initial guess m0 in which all messages are constant
functions.

Note that this is not the only way of �nding �xed-points. McEliece et al. [17]
have shown a simple example for which F contains multiple �xed points and belief
propagation �nds only one. They also showed an example where a �xed-point
exists but the iterations m  Fm do not converge. Murphy et al. (1999) describe
an alternative method for �nding �xed-points of F .

In this section we ask, suppose a �xed-point m� = Fm� has been found by some
method, how are the beliefs calculated based on these messages related to the correct
beliefs?

Claim 5: For a Gaussian graphical model of arbitrary topology, if m� is a �xed-
point of the message-passing dynamics then the means based on that �xed-point
are exact.

The proof is based on the following lemma:

Periodic beliefs lemma: If m� is a �xed-point of the message-passing dynamics



in a graphical model G then one can construct a modi�ed unwrapped tree T of
arbitrarily large depth such that: (1) all non-leaf nodes in T have the same statistical
relationship with their neighbors as the corresponding nodes in G and (2) all nodes
in T will have the same belief as the beliefs in G derived from m�.

Proof: The proof is by construction. We �rst construct an unwrapped tree T of
the desired depth. We then modify the potentials and the observations in the leaf
nodes in the following manner. For each leaf node ~xi, �nd the k�1 nodes in G that
neighbor xi0 (where ~xi is a replica of xi0) excluding the parent of ~xi. Calculate the
product of the k� 1 messages that these neighbors send to the corresponding node
in G under the �xed-point messages m� and the message that yi0 sends to xi0 . Set
~yi and 	(~yi; ~xi) such that the message ~yi sends to ~xi is equal to this product.

By this construction, all leaf nodes in T will send their neighbors a message from
m�. Since all non-leaf nodes in T have the same statistical relationship to their
neighbors as the corresponding nodes in G, the local message passing updates in T

are identical to those in G. Thus all messages in T will be replicas of messages in
m�. 2

Proof of Claim 5: Using this lemma we can prove claim 5. Let ~� be the conditional
mean in the modi�ed unwrapped tree then, by the periodic beliefs lemma:

~� = O�0 (49)

where �0(i) is the posterior mean at node i under m�.

We also know that ~� is a solution to:

~Vxx~� = �~Vxy~y (50)

where ~Vxx; ~Vxy; ~y refers to quantities in the modi�ed unwrapped tree. So:

~VxxO�0 = �~Vxy~y (51)

We use the notation [A]m to indicate taking the m �rst rows of a matrix A. Note
that for any two matrices [AB]m = [A]m B. Taking the �rst m rows of equation 51
gives: h

~VxxO
i
m
�0 = �

h
~Vxy~y

i
m

(52)

As in the previous proofs, the key idea is to relate the inverse covariance matrix of
the modi�ed unwrapped tree to that of the original loopy graph. Since all non-leaf
nodes in the modi�ed unwrapped tree have the same neighborhood relationships
with their neighbors as the corresponding nodes in the loopy graph we have, for
any m < N � L: h

~VxxO
i
m
= [OVxx]m (53)

and: h
~Vxy~y

i
m
= [OVxyy]m (54)

Substituting these relationships into equation 52 gives:

[O]m Vxx�0 = � [O]m Vxyy (55)



This equation holds for any m < N�L. Since we can unwrap the tree to arbitrarily
large size we can choose m such that [O]m has n independent rows (this happens
once all nodes in the loopy graph appear at least once in the modi�ed unwrapped
tree). Thus:

Vxx�0 = �Vxyy (56)

hence the means derived from the �xed-point messages are exact. 2

4 Extensions

4.1 Non-Gaussian variables

In Sect. 1 we described the \max-product" belief propagation algorithm that �nds
the MAP estimate for each node [20, 24] of a network without loops. As with max-
product, iterating this algorithm is a method of �nding a �xed-point of the message
passing dynamics. How does the assignment derived from this �xed-point compare
the MAP assignment?

Claim 6: For a graphical model of arbitrary topology with continuous potential
functions, if m� is a �xed-point of the max-product message-passing dynamics then
the assignment based on that �xed-point is a local maximum of the posterior prob-
ability.

Proof: Since the posterior probability factorizes into a product of pairwise poten-
tials, the log posterior will have the form,

logP (xjy) =
X
ij

Jij(xi; xj) + Jii(xi; yi) (57)

Assuming the cliiue potential functions are di�erentiable and �nite, the MAP solu-
tion, u, will satisfy

@

@xi
logP (xjy)jx=u = 0 (58)

We will write this as:
V u = 0 (59)

where V is a nonlinear operator.

As in the previous section, we can use the periodic belief lemma to construct a
modi�ed unwrapped tree of arbitrary size based on m�. If we denote by ~V the
nonlinear set of equations that the solution to the modi�ed unwrapped problem
must satisfy we have:

~V ~u = 0 (60)

Because of the periodic belief lemma:

~u = Ou0 (61)

Similarly, as in the previous section, all the non-leaf nodes will have the same
statistical relationship with their neighbors as do the corresponding nodes in the
loopy network, so: h

~V O
i
m
= [OV ]m (62)



where the left and right hand sides are nonlinear operators.

Substituting Eqs. 61 and 62 into Eq. 60 gives:

V u0 = 0 (63)

A similar substitution can be made with the second derivative equations to show
that the Hessian at u0 is positive de�nite. Thus the assignment based on m� is at
least a local maximum of the posterior. 2

Claim 6 can be generalized to discrete nodes with a more general de�nition of local
maximum.

De�nition: A discrete assignment x is a generalized local maximum of prob(x) with
respect to a set of allowed moves f�ig if for all i prob(x) > prob(x+�i)

Claim 7: For a graphical model of arbitrary topology with discrete nodes, if m� is a
�xed-point of the max-product message-passing dynamics then x�, the assignment
based on that �xed-point, is a generalized local maximum of the posterior proba-
bility for any set of moves f�ig that only allow changing singly-connected subtrees
of x�.

Proof: De�ne
V u = argmax

�i
Prob(x = u+�ijy) (64)

So at a local maximum V u = 0. The rest of the proof is analogous to the proof of
claim 6.

4.2 Vector valued nodes

Most of the results we have derived so far hold for vector-valued nodes as well but
the indexing notation is rather more cumbersome. We use a stacking convention,
in which we de�ne the vector x by:

x =

0
@ x1

x2
� � �

1
A (65)

Thus supposing x1 is a vector of length 2 then x(1) is the �rst component of x1 and
x(2) is the second component of x1 (not x2). We de�ne y in a similar fashion.

Using this stacking notation the equations for exact inference in Gaussians remain
unchanged, but we need to be careful in reading out the posterior means and covari-
ances from the stacked vectors. Thus we can still complete the square in stacked
notation to obtain:

Vxx� = �Vxyy (66)

and Cxjy = V �1
xx . Assuming x1 is of length 2, �1 the posterior mean of x1 is given

by:

�1 =

�
�(1)
�(2)

�
(67)

and the posterior covariance matrix �1 is given by:

�1 =

�
Cxjy(1; 1) Cxjy(1; 2)
Cxjy(2; 1) Cxjy(2; 2)

�
(68)



We use the same stacked notation for ~x and de�ne the matrixO such that O(i; j) = 1
if ~x(i) is a replica of x(j) and zero otherwise. Using this notation, the relationships

between unwrapped and loopy quantities (e.g.
h
~VxxO

i
m

= [OVxx]m ) still hold.

Thus all the analysis done in the previous sections holds | the only di�erence are
the semantics of quantities such as �(1), which need to be understood as a scalar
component of a (possibly) larger vector �1. For explicitness, we restate the �ve
claims for vector valued nodes.

For any i; j less than or equal to the number of components in x1 we have:

Claim 1a:

~�(i) = �(i) + ~Cxijyr (69)

where r is a vector that is zero everywhere but the last L components (corresponding
to the leaf nodes).

Claim 2a:

~Cxjy(i; j) = Cxjy(i; j) + ~Cxjjyr1 �
~Cxjjyr2 (70)

where r1 is a vector that is zero everywhere but the last L components (correspond-
ing to the leaf nodes) and r2 is equal to 1 for all components corresponding to
non-root nodes in the unwrapped tree that reference x(i). All other components of
r2 are zero.

Claim 3a: If the conditional correlation between all components of the root node
and the leaf nodes decreases rapidly enough then (1) belief propagation converges
(2) the belief propagation means are exact and (3) the i; j component of the belief
propagation covariance matrices is equal to the i; j component of the true covariance
matrices minus the summed conditional correlations between ~x(j) and all nonroot
~x(k) that are replicas of x(i).

Claim 5a: For a (possibly vector-valued) Gaussian graphical model of arbitrary
topology, if m� is a �xed-point of the message-passing dynamics, then the means
based on that �xed-point are exact.

Claim 6a: For a (possibly vector-valued) graphical model of arbitrary topology
with continuous potential functions, if m� is a �xed-point of the max-product
message-passing dynamics, then the assignment based on that �xed-point is a local
maximum of the posterior probability.

We emphasize that these claims do not need to be reproven | all the equations
used in proving the scalar-valued case still hold only the semantics we place on the
individual components are di�erent.

We end this analysis with two simple corollaries:

Corollary 1: Let m� be a �xed-point of Pearl's belief propagation algorithm on a
Gaussian Bayesian network of arbitrary topology and arbitrary clique size. Then
the means based on m� are exact.

Corollary 2: Let m� be a �xed-point of Pearl's belief revision (max-product) algo-
rithm on a Bayesian network with continuous joint probability, arbitrary topology
and arbitrary clique size. The assignment based on m� is at least a local maximum
of the posterior probability.

These corollaries follow from claims 5a and 6a along with the equivalence between



Pearl's propagation rules and the propagation rules for pairwise undirected graphical
models analyzed here [24]. Note that even if the Bayesian network contained only
scalar nodes, the conversion to pairwise cliques may necessitate using vector-valued
nodes.

5 Simulations

To illustrate the analysis, we ran belief propagation on a 25�25 2D grid. The joint
probability was:

P (x; y) = exp(�
X
ij

wij(xi � xj)
2 �

X
i

wii(xi � yi)
2) (71)

where wij = 0 if nodes xi; xj are not neighbors and 0:01 otherwise and wii was
randomly selected to be 10�6 or 1 for all i with probability of 1 set to 0:2. When
wii = 1, we set the observations yi to be samples from the surface z(x; y) = x+ y.
When wii = 10�6 we set yi=0. This problem corresponds to an approximation
problem from sparse data where only 20% of the points are visible and there is a
weak prior on the unobserved nodes pulling them towards zero.

We found the exact posterior by solving Eq. 12. We also ran loopy belief propagation
and found that when it converged, the loopy means were identical to the true means
up to machine precision. Also, as predicted by the theory, the loopy variances were
too small | the loopy estimate was overcon�dent.

How is this predicted from our analysis? This illustrates the reparameterization
lemma in section 2.5. The parameterization we used in the loopy network was

Vij =

�
wij �wij

�wij wij

�
, Vii =

�
wii �wii

�wii wii

�
. Thus Vij are not diagonally

dominant. However, we can also use a di�erent parameterization in which we shift

the diagonal component from Vii to Vij: ~Vij =

 
wij +

wii��
deg( ~xi)

�wij

�wij wij +
wjj��
deg( ~xj )

!
,

~Vii =

�
� �wii

�wii wii

�
. In this parameterization, all ~Vij are diagonally dominant.

Thus claim 4 guarantees that belief propagation will converge and the variances will
be overcon�dent.

We also ran belief propagation on this problem with wii = 0 for the unobserved
nodes. Note that under this case we cannot reparameterize the unwrapped tree so
that all Vij are diagonally dominant so claim 4 does not hold. We found that belief
propagation still converged with a similar convergence rate and that the means
were exact. This illustrates the fact that claim 4 only gives su�cient (but not
necessary) conditions for the conditional correlation to decrease rapidly enough.
Claim 5 guarantees that the means will be exact.

In many applications, the solution of equation 12 by matrix inversion is intractable
and iterative methods are used. Figure 4 compares the error in the means as a
function of iterations for loopy propagation and successive-over-relaxation (SOR)
, considered one of the best relaxation methods [21]. We used an over-relaxation
constant of 1:9. Note that after �ve iterations loopy propagation has mean squared
error of order 10�1 while SOR requires many more. As expected by the fast con-
vergence, the approximation error in the variances was quite small. The median
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Figure 4: (a) 25� 25 graphical model for simulation. The unobserved nodes (un-
�lled) were connected to their four nearest neighbors and to an observation node
(�lled). (b) The error of the estimates of loopy propagation and successive over-
relaxation (SOR) as a function of iteration. Note that belief propagation converges
much faster than SOR. (c) the same plot as in (b) but with log scaling on the y axis
(d-e) similar plots when the connections between unobserved nodes were increased
by four orders of magnitude. Convergence of both BBP and SOR is much slower in
this case but BBP is still faster.



error was 0:018. For comparison the true variances ranged from 0:01 to 0:94 with a
mean of 0:322. Also, the nodes for which the approximation error was worse were
indeed the nodes that converged slower.

The analysis in section 2.5 suggests that the convergence rate is related to the
ratio of diagonal to o�-diagonal elements in ~Vij . To illustrate this, We redid the
simulations with the same network but set wij = 10:0 between neighboring nodes.
Indeed convergence is much slower in this case (�gure 4d,e). As expected from
the slower convergence, the error in the variance estimates is larger here with the
median error 0:299.

The slow convergence of SOR on problems such as these lead to the development
of multi-resolution models in which the MRF is approximated by a tree [15, 5] and
an algorithm equivalent to belief propagation is then run on the tree. Although
the multi-resolution models are much more e�cient for inference, the tree structure
often introduces block artifacts in the estimate. Our results suggest that one can
simply run belief propagation on the original MRF and get the exact posterior
means. It would be interesting to see whether one can use the convergence rate of
the beliefs to improve the variance estimate at every node.

6 Discussion

Independent of our results, two groups have recently analyzed special cases of Gaus-
sian graphical models. Frey [8] analyzed the graphical model corresponding to
factor analysis and gave conditions for the existence of a stable �xed-point. Rus-
mevichientong and Van Roy [19] analyzed a graphical model with the topology of
turbo decoding but a Gaussian joint density. They showed that for this speci�c
case, belief propagation converges and the means are exact.

Our main interest in analyzing the Gaussian case was to understand the performance
of belief propagation in networks with multiple loops. Although there are many
special properties of Gaussians, we are struck by the similarity of the analytical
results reported here for multi-loop Gaussians and the analytical results for single
loops and general distributions reported in [24]. The most salient similarities are:

� In single loop networks with binary nodes, the mode at each node is guar-
anteed to be correct but the con�dence in the mode may be incorrect. In
Gaussian networks with multiple loops the mean at each node is guaran-
teed to be correct but the con�dence around that mean will in general be
incorrect.

� In single loop networks fast convergence is correlated with good approxi-
mation of the beliefs. This is also true for Gaussian networks with multiple
loops.

� In single loop networks the convergence rate and the approximation error
were determined by a ratio of eigenvalues �1=�2. This ratio determines
the extent of the statistical dependencies between the root and the leaf
nodes in the unwrapped network for a single loop. In Gaussian networks
the convergence rate and the approximation error are determined by the
o�-diagonal terms of ~Cxjy. These terms quantify the extent of conditional



dependencies between the root nodes and the leaf nodes of the unwrapped
network.

These similarities are even more intriguing when one considers how di�erent Gaus-
sians graphical models are from discrete models with arbitrary potentials and a
single loop. In Gaussians the conditional mean is equal to the conditional mode
and there is only one maximum in the posterior probability, while the single loop
discrete models may have multiple maxima, none of which will be equal to the mean.
Furthermore, in terms of approximate inference the two classes behave quite di�er-
ently. For example, mean �eld approximations give the exact means for Gaussian
MRFs while they work poorly in discrete networks with a single loop in which the
connectivity is sparse [22]. The resemblance of the results for Gaussian graphical
models and for single loops leads us to believe that similar results may hold for a
larger class of networks.

The sum-product and max-product belief propagation algorithms are appealing,
fast and easily parallelizable algorithms. Due to the well known hardness of prob-
abilistic inference in graphical models, belief propagation will obviously not work
for arbitrary networks and distributions. Nevertheless, there is a growing body of
empirical evidence showing its success in many loopy networks. Our results give a
theoretical justi�cation for applying belief propagation in networks with multiple
loops. This may enable fast, approximate probabilistic inference in a range of new
applications.
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