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Abstract

High quality rendering and physics-based modeling in volume graphics have been limited be-
cause intensity-based volumetric data do not represent surfaces well. High spatial frequencies
due to abrupt intensity changes at object surfaces result in jagged or terraced surfaces in rendered
images. Use of a distance-to-closest-surface function to encode object surfaces allows accurate
reconstruction of objet surfaces for volumetric data. However, constructing the distance map for
distance-based rendering requires a prior model of the object surface. Here we present a num-
ber of methods that can be used to estimate the distance map from a binary segmented volume,
where no prior knowledge of object surfaces exists.
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Abstract

High quality rendering and physics-based modeling in volume
graphics have been limited because intensity-based volumetric data
do not represent surfaces well. High spatial frequencies due to
abrupt intensity changes at object surfaces result in jagged or ter-
raced surfaces in rendered images. Use of a distance-to-closest-
surface function to encode object surfaces allows accurate recon-
struction of objet surfaces for volumetric data. However, construct-
ing the distance map for distance-based rendering requires a prior
model of the object surface. Here we present a number of meth-
ods that can be used to estimate the distance map from a binary
segmented volume, where no prior knowledge of object surfaces
exists.

Keywords: Volume Rendering, Volume Graphics, Medical Appli-
cations, Surgical Simulation, Physics-based Graphics, Haptic Feed-
back

1 Introduction

In [2], it was shown that surfaces can be encoded into volumetric
data by storing the distance-to-closest-surface value at each sample
point in the data. The distance map has some attractive properties.
First, the zero-value of the distance map locates surfaces while the
gradient of the distance map yields surface normals. Second, when
the sampling rate of the volumetric data is adequate (i.e. when it
is large relative to the surface curvature), a low-cost 6-point central
difference gradient estimator applied to the distance map can accu-
rately reconstruct surface normals near the surface. Third, although
folds and object edges or corners introduce singularities and non-
linearities into the distance field that cause shading artifacts with a
central difference gradient estimator, the presence of these irregu-
larities in the distance map can be easily detected during rendering
so that higher order filters or more sophisticated gradient estimation
methods can be locally applied. Fourth, in addition to applications
in volume rendering, the distance map approach can be used to re-
construct surface normals and penetration distances for applications
in haptics and physics-based modeling.

While the distance map enables high quality rendering and shad-
ing of surfaces in volumetric data, it requires a prior model of the
surface. However, in binary-sampled data, exact knowledge of the
underlying object surface is missing and distance maps must be ap-
proximated from the binary data rather than from the true surface.
In this working paper, we present the results of experiments to test
various existing methods for estimating distance maps from binary
segmented data. The results of these tests show that existing meth-
ods do not provide artifact-free distance maps. Five different dis-
tance metrics are compared for a 2D circle and the artifacts that
result from errors in the distance map are illustrated for a volume
rendered sphere. This report uses a simple sphere so that artifacts
can be easily compared. In practice, we have found that artifacts
are particularly severe in data that is not isometric – where the data
is sampled at different rates along different major axes. This is of-
ten the case in MRI imaging, where the in-plane sampling rate is

frequently much higher that the spacing between planes.
Because these existing methods do not generate satisfactory dis-

tance maps from binary data, we have developed a new method
for calculating distances from the surface of a binary object. This
method, Constrained Elastic Surface Nets, is detailed in [1].

2 Calculating Distances from Binary Data

Binary volumetric data no longer contains an accurate representa-
tion of object surfaces. This section analyzes several techniques
for estimating surfaces and their corresponding distance maps from
binary databy comparing errors in these distance maps for a circu-
lar object. Volume rendered images for distance maps of a binary
sphere that were created with some of these 5 methods illustrate the
artifacts produced by errors in the distance approximations.

Perhaps the most common source of binary volumetric data is
segmented medical data, where different tissues or structures are
each assigned a unique classification or type. This paper does not
advocate the use of a distance map with grey-scale data because the
gradient of the grey-scale data often provides a good estimate of
surface normals[3]. However, Figure 1, a 2D slice from a 3D MRI
image of a human knee, illustrates a case where the grey-scale gra-
dient does not give a good surface normal estimate. Figure 1b) was
calculated by applying a central difference operator to Figure 1a)
at hand-segmented edge points along the femur, one of the bones
in the knee. Because the bone surface is generally smooth and of
uniform density, we expect surface normals to have a relatively con-
stant magnitude and a slowly varying direction. However, because
the gradient depends on the thickness and image intensity of ma-
terials that are adjacent to the bone surface, and because there are
a variety of materials adjacent to the femur, the estimated normals
vary dramatically around the edge of the femur. Even when the
magnitude of the gradient vector is normalized as in Figure 1c), un-
expected and sudden changes in the direction of the image gradient
would introduce severe artifacts into an image shaded using grey-
scale gradients. For this reason, it is sometimes necessary to calcu-
late surface normals from a binary segmentation of objects rather
than from the original measured grey-scale data.

In binary-sampled data, exact knowledge of the underlying ob-
ject surface is missing. Distance maps must be approximated from
the binary data rather than from the true surface. Two basic strate-
gies are: 1) estimate distances directly from the binary values; and
2) estimate the surface based on local binary values and calculate
distances from this surface. In this section, we describe methods
from both of these categories, illustrate errors in these methods by
comparing estimated 2D distance maps to the true distance function
of a circle, and illustrate the effect of the errors on surface normal
calculation in images of volume rendered spheres.

Five different methods were used to calculate the distance from
the edge of a binary 2D circle. Methods calculated directly from
the binary values include the chessboard distance, the city-block
distance, and the Euclidean distance. These methods use the dis-
tance metrics illustrated in Figure 2 and are detailed for 2D dis-



a) b) c)

Figure 1: a) 2D Magnetic Resonance Image (MRI) cross section
through a human knee. b) image gradient vectors calculated us-
ing central differences on the grey-scale data at edge points of the
segmented femur. c) image gradient vectors with a normalized mag-
nitude. The direction and magnitude of image gradients vary much
more than we would expect the surface normals of the knee bone
to vary, in some cases pointing inward when we expect an outward
facing normal. Hence, applying a gradient operator to the grey-
scale data does not always provide a good estimate of surface nor-
mals. (Data and segmented image courtesy of R. Kikinis, Brigham
and Women’s Hospital, Boston MA).
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Figure 2: Distance metrics used by the (left to right): city-block,
chessboard and Euclidean distance methods. The figures illustrate
the assigned distance of neighboring pixels from the central pixel
for the three methods.

tances in [5]1. Extending these algorithms to 3D is straightforward.
The city-block distance and Euclidean distance methods have been
implemented in 3D.

The remaining two methods approximate the surface from lo-
cal binary values and then estimate distances to the approximate
surface. The first method is analogous to the Marching Cubes al-
gorithm [4]. It assumes that the surface lies in cubes bounded by
8 elements with different binary values. For each cube containing
a surface, the surface is assumed to cross cube edges mid-way be-
tween elements with different binary values. In 2D, the constructed
edge becomes a sequence of straight lines with endpoints midway
between elements with different binary values. Once the edge is de-
fined, distances from the edge are calculated using a modification of
the Euclidean distance filter. In the second method, the constructed
surface connects points at the center of each cube containing a sur-
face. The distance map is computed from the mesh of center points
using Euclidean distances. This central-point method has been im-
plemented in 3D.

Figure 3 shows the true 2D distance map for a circle and the ap-
proximate distances calculated using the chessboard distance met-
ric and the central-point distance method. Only small differences
are visible from these intensity images. Table 1 reports the max-
imum and minimum errors of the estimated distance compared to
the true distance for various methods. For some of the methods,
various smoothing filters were applied to the distance maps and the
resultant errors for these estimates are also presented. The smooth-
ing filters utilized were a 3x3 Gaussian filter, and 5x5 Gaussian and

1In [5], true Euclidean distances are approximated to allow for an
integer-based algorithm in the interest of speed. In our implementation,
floating point distances were used.

Dist. Measure Filter Max Error Min Error
city block none 42.39 -8.67
chessboard none 22.00 -29.61
euclidean none 5.15 -2.08
euclidean 3x3 Gaussian 5.15 -1.92
euclidean 5x5 Gaussian 5.15 -1.83
euclidean 5x5 box 5.15 -1.73
marching cubes none 1.02 -1.02
central point none 0.71 -0.69
central point 5x5 box 2.49 -0.69

Table 1: Errors (in pixels) between the true distance map and es-
timated distance maps for a binary circle of radius 50 pixels using
various distance measures. As indicated, in some cases the ap-
proximate distance fields were smoothed with a Gaussian or a box
averaging filter.

box averaging filters. Figure 4 are images of the difference between
the true distance map and the calculated distance maps for various
distance estimation methods. In the images, a mid-level grey value
represents zero error while black or white represent large negative
or positive errors respectively. The magnitude and variance of the
error along the edge of the circle in Figure 4 shows that for a cir-
cle, the smoothed central-point distance method provides the best
estimate of the true distance.

a) b) c)

Figure 3: Distances from the edge of a circle of radius 50 cen-
tered in a 100x100 image. A grey value of 255 (white) represents
a positive distance, a grey value of 0 (black) represents a negative
distance and a grey value of 127 represents a distance of zero. a)
is the true distance map for a 2D circle. b) is the distance map ap-
proximated from a binary circle using the chessboard distance and
c) is the distance map approximated from the central-point distance
method.

Figure 5 presents images rendered from various distance maps
estimated from a binary representation of a sphere of radius 30 vox-
els. The distance map for the images were calculated using the city-
block distance, the Euclidean distance, the central-point distance,
and the central-point distance smoothed with a 5x5x5 box averag-
ing filter. The image generated from the smoothed central-point
distance estimator has a relatively smooth surface that represents
the original data reasonably well.

3 Conclusions

The ability to represent surfaces accurately in volume graphics
opens up many research directions in volume rendering, haptics,
and physics based modeling for applications such as surgical sim-
ulation which require a volumetric object representation. Using a
distance map representation allows accurate reconstruction of ob-
ject surfaces. However creating a distance map requires an estimate
of the object surface.

For binary objects, the accuracy of the distance map is limited
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Figure 4: Errors in distance maps estimated from a binary circle
using: a) chessboard distance; b) cityblock distance; c) Euclidean
distance; d) marching-cubes edge distance; e) central-point dis-
tance; and f)central point distance smoothed with a 5x5 box aver-
aging filter. The error images were calculated by subtracting the
true distance from the estimated distance and linearly scaling and
centering the error so that zero error corresponds to a grey value of
127, and positive errors are brighter and negative errors are darker
than 127. The city block and chessboard errors were significantly
larger and were scaled here by a factor of 12.75. The other errors
were scaled here by a factor of 51.

by the best available estimate of the original surface. Most exist-
ing techniques and all of the techniques analyzed above use local
filtering methods to estimate surfaces from binary data. However,
especially when surfaces are at shallow angles to the sampling grid,
or when the data sampling is not isometric, local filters give unsat-
isfactory surface estimates. In [1], a new method is presented that
uses a more global approaches to surface estimation by fitting an
elastic net over the binary surface that relaxes to smooth out the
shape of the surface but is constrained to adhere to the original bi-
nary segmentation. This method provides much better results than
the distance metrics that have been described in this working paper.
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Figure 5:Volume rendered images shaded using central differences
applied to distance maps estimated from a binary sampled sphere
of radius 30 voxels. The distance estimation methods were: top
left, city block distance; top right, Euclidean distance; bottom left,
central point distance; and bottom right, the central point distance
map smoothed with a 5x5x5 box averaging filter. The last method
produces acceptable shading for a 30 voxel radius binary sphere.
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