
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

User Level Scheduling of Communicating
Real-Time Tasks

Chia Shen, Oscar Gonzalez, Krithi Ramamritham, Ichiro Mizunuma

TR99-21 April 1999

Abstract

Unique challenges are present when one tries to build distributed real-time applications using
standard off-the-shelf systems which are in common use but are not necessarily designed specifi-
cally for real-time systems. In particular, to realize end-to-end predictability when, say, a process
on one node sends data to a process on another node, several issues must be addressed: (1) map-
ping application real-time requirements into requirements imposed on the system schedulable
entities (tasks), (2) ensuring predictable execution of the tasks in the face of possible priority
inversions, limited OS level real-time scheduling support, and limited number of priorities, and
(3) integrating real-time and non-real-time tasks in the same platform. In this paper, we propose
solutions to these challenges. In particular, we present user-level scheduling schemes for com-
municating tasks. These solutions are practical and are based on simple primitives that can be
found in most of todaýs commonly used operating systems. To validate our design and to exam-
ine the feasibility of user-level scheduling in actual systems, we have implemented our solutions
in MidART running on PCs with Windows NT operating system over UDP/IP and Fast Ethernet
LANs. This paper contributes to further our understanding of how to build real-time systems
using commercially available off-the-shelf components.

IEEE 1999 Real-Time Technology and Applications Symposium, June 2-4, Vancouver, British
Columbia, Canada

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1999
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

User Level Scheduling of Communicating Real-Time Tasks

Chia Shen Oscar Gonz�alez�

Krithi Ramamrithamy

MERL - A Mitsubishi Electric Research Lab. Computer Science Department
201 Broadway University of Massachusetts

Cambridge, MA 02139 Amherst, MA 01003
shen@merl.com [ogonzale,krithi]@cs.umass.edu

Ichiro Mizunuma

Industrial Electronics and Systems Lab.,
Mitsubishi Electric Corp

8-1-1, Tsukaguchi-honmachi
Amagasaki, Hyogo, 661, Japan.
mizunuma@con.sdl.melco.co.jp

Abstract
Unique challenges are present when one tries to

build distributed real-time applications using standard
o�-the-shelf systems which are in common use but are
not necessarily designed speci�cally for real-time sys-
tems. In particular, to realize end-to-end predictability
when, say, a process on one node sends data to a pro-
cess on another node, several issues must be addressed:
(1) mapping application real-time requirements into
requirements imposed on the system schedulable en-
tities (tasks), (2) ensuring predictable execution of the
tasks in the face of possible priority inversions, lim-
ited OS level real-time scheduling support, and limited
number of priorities, and (3) integrating real-time and
non-real-time tasks in the same platform. In this pa-
per, we propose solutions to these challenges. In par-
ticular, we present user-level scheduling schemes for
communicating tasks. These solutions are practical
and are based on simple primitives that can be found
in most of today's commonly used operating systems.
To validate our design and to examine the feasibility of
user-level scheduling in actual systems, we have imple-
mented our solutions in MidART running on PCs with
Windows NT operating system over UDP/IP and Fast
Ethernet LANs. This paper contributes to further our
understanding of how to build real-time systems using
commercially available o�-the-shelf components.

�The research has been done during this author's internship
at MERL.

yResearch supported in part by the National Science Foun-
dation Grant CDA-9502639.

1 Introduction

It is becoming evident that distributed industrial
real-time applications, such as process control, factory
automation and plant control systems, will move to-
wards using open, standard, commercially available
and more general purpose computers, operating sys-
tems and networks. For example, more expensive
workstations will be replaced with o�-the-shelf PCs,
and adoption of Windows NT will allow the use of PCs
for real-time control. There is also a lot of momentum
toward making control networks IP-based [4]. More-
over, Ethernet o�ers cost and support advantages over
industrial �eldbuses as a control and device-level net-
work [3]. On the other hand, more and more desktop
applications are also starting to embody real-time el-
ements, such as the presentation of continuous media
and the remote control of instruments and devices in
distant learning environments. This potential of using
general purpose platforms for a very wide spectrum of
real-time applications has prompted many contempo-
rary general purpose operating systems to o�er some
minimal degree of real-time scheduling and program-
ming support.

However, unique challenges are present when one
tries to build distributed real-time applications using
standard o�-the-shelf systems which are in common
use but are not necessarily designed speci�cally for
real-time systems. In particular, to realize end-to-end
predictability, say, when a process on one node sends
data to a process on another node, we must deal with
several issues: (1) mapping application real-time re-

quirements into requirements imposed on the system
schedulable entities (tasks), (2) ensuring predictable
execution of the tasks in the face of possible priority
inversions, limited OS level real-time scheduling sup-
port, and limited number of priorities, and (3) inte-
grating real-time and non-real-time tasks in the same
platform.

In this paper, we address these challenges. In
particular, we present user-level scheduling schemes
for communicating tasks that are practical and are
based on simple primitives that can be found in most
of today's commonly used operating systems. The
scheduling schemes consist of a combination of server-
based execution, rate control of message communica-
tion, and a simpli�ed form of dual priority scheduling
[6]. Our schemes are designed to allow both real-time
and non-real-time tasks to execute on the same plat-
form using open o�-the-shelf machines and networks.
To predictably schedule real-time activities, it is well-
known that the worst case execution time is required.
To obtain these times, we provide a pro�ler together
with our scheduler support to extract the execution
time and message delay parameters for the server com-
ponents.

For concreteness, the above schemes for user-level
scheduling are designed and implemented in the con-
text of MidART, a real-time network middleware
[16, 7, 13]. This middleware provides a distributed
real-time application development software package
with an easy-to-use programming interface for real-
time data acquisition and communication. We present
our design, implementation and experimental results
for a distributed real-time system realized using PCs
with Windows NT operating system over UDP/IP on
Fast Ethernet LANs. Our implementation utilizes the
guidelines and recommendations developed in our pre-
vious experimental work on using Windows NT for
real-time applications [15].

The paper is organized as follows. In the next sec-
tion, we motivate our work further by contrasting it
with previous work on the integrated scheduling of
real-time and non-real-time scheduling. In Section 3,
we analyze the characteristics of the applications that
we intend to support and in Section 4, we list the set
of features and problems often found in contemporary
operating systems. Section 5 presents an overview of
MidART. Section 6 presents our user-level scheduling
schemes. The implementation details and experimen-
tal results are described in Section 7. We conclude the
paper in Section 8.

2 Related Work and Scope of Research

Much of the previous research on scheduling sup-
port for integrating real-time and non-real-time tasks

has been done by either (1) extending existing oper-
ating systems [8, 17, 14, 10], or (2) virtualizing the
underlying hardware to multiplex a real-time kernel
with the original operating system [1, 9]. These ap-
proaches have certain obvious drawbacks: Approach
(1) needs to modify the source of the existing oper-
ating system, and approach (2) is di�cult to support
real-time and non-real-time activities that are closely
related, e.g., in the case where there are real-time and
non-real-time threads belonging to the same process
and need to share an address space. The extended
operating systems based on these approaches are not
easily accepted or adapted by many vendors, and thus
are not readily available to general users. Moreover,
most of these research systems have been done on op-
erating systems (e.g., FreeBSD and Solaris Unix) that
are from an earlier generation.

The research reported in this paper di�ers from
previous work in aiming at supporting the integra-
tion of real-time and non-real-time tasks by devel-
oping schemes only at the user level, utilizing the
facilities that are present in most of the contempo-
rary operating systems. These facilities include sup-
port for real-time scheduling, such as non-degradable
priorities, and real-time class threads { support not
present in the older generation of these operating sys-
tems. For example, Windows NT 4.0 provides a RE-
ALTIME class such that threads in this class have non-
degradable priorities and their execution has prece-
dence over timesharing threads [5, 15]. It also sup-
ports timers with 1 millisecond granularity and peri-
odic callback routines which can be used for real-time
periodic tasks.

Real-time tasks require predictable scheduling, ex-
ecution and completion with bounded variability. In
reality, predictability comes in di�erent granularities:
� At one end of the spectrum, the direct physi-
cal control of robots, devices and instruments by
local loop controllers, embedded controllers and
PLCs may require sub-millisecond to one millisec-
ond delay bound. Unfortunately, the e�ects of
nondeterminism present in today's operating sys-
tems [11] make it impractical to design user level
scheduling to support real-time applications with
sub-millisecond precision. These types of applica-
tions are better served by real-time kernels such
as those described in [1, 9].

� At the other end of this spectrum, a deadline
value of one second is good enough for a video
on demand �le server [2] or database transactions
for �nancial applications. These applications can
be directly built with existing operating system
primitives as shown in [2].

� In the middle of this spectrum, there is a large

population of real-time applications that can tol-
erate end-to-end roundtrip delay/response time
in the tens to hundreds of milliseconds range such
as those described in [13]. These applications of-
ten involve the interaction between human op-
erators/users and remote data/image collection,
video monitoring, �le accessing, and command is-
suing in order to view videos, monitor and con-
trol devices at a distance. Our goal in this re-
search is to further our understanding of how to
build real-time systems using commercially avail-
able o�-the-shelf systems for such applications.

Our speci�c focus in this paper is on supporting
applications in the middle spectrum, speci�cally, ap-
plications where human users need to interact, con-
trol, and monitor instruments, devices and facilities in
a networked environment. Applications in this spec-
trum may be considered by some as \soft" real-time,
thus can tolerate longer latency/delay caused by the
occasional misbehaving of the operating system and
the network.

3 Application Characteristics and Sys-

tem Support Needed
To design appropriate scheduling schemes, we must

�rst understand the application domain. Below is a
characterization of the types of distributed application
tasks that we intend to support:

� Command and control: Human operators sporad-
ically issue commands which often need immedi-
ate data transmission and delay bounded data re-
ception.

� Video/audio: Periodic transmission, requiring
low jitter display.

� Device/instrument monitoring: Sporadic or peri-
odic data collection and transmission, including
alarms, and immediate data display upon recep-
tion.

� Trend graph: Periodic data collection and trans-
mission (perhaps at a coarser granularity), and
periodic data display upon reception.

� Background: Non-real-time activities such as log-
ging data to disk, reviewing video segments, and
sending email. Best e�ort or soft real-time data
transmission and reception.

As one can see, sending and receiving data in var-
ious forms is a key component in most of the above
application tasks. In essence, each of these tasks can
be viewed as consisting of four subtasks:

� A writer, such as a sensor, that generates the data
to be sent.

� A sender that sends the data to the destination.

� A receiver that receives the data from the net-
work.

� A reader that reads and uses the data received.

For some application tasks, such as the issuing of
a command by an operator, the data needs to be sent
to the receiver immediately after it is generated and
the data needs to be read immediately after it is re-
ceived. For other application tasks, such as displaying
the video image of a monitored industrial plant, the
writer (i.e., the camera) and the reader (i.e., the dis-
play function at the operator station) can execute at
its own pace based on the requirements of the appli-
cation. Based on these observations, we have derived
the following set of operations that the underlying sys-
tem and the scheduler must support [16]:
Data Sending Operations:

� Synchronous Data Send: Data send operation is
triggered by application writes.

� Asynchronous Data Send: Data is sent periodi-
cally, and the period is independent of the writer's
period. Also, the last data item written could be
sent or the data could be sent in the order written.

Data Reception Operations:

� Blocking Read: Application reads block while
awaiting the arrival of a data update message
from the writer's node. When the message is re-
ceived, the reader application is signaled.

� Non-Blocking Read: Application reads return the
current contents of the communicated data. That
is, the reader's application will not be immedi-
ately noti�ed upon the arrival of data update
messages.

In the rest of the paper, we will focus on solutions
to the scheduling of the four common subtask types
resulting from the above observations.

4 General Characteristics of General

Purpose Operating Systems
The features and problems often found in contem-

porary operating systems, such as Windows NT, IRIX
and Solaris, include:
Features:

� Preemptive priority-based scheduling and/or
round-robin scheduling.

� Non-degradable priorities.

� Mechanisms for priority adjustment (e.g., set pri-
ority of a process or thread to a di�erent level).

� Periodic timers to trigger periodic events and re-
lease of thread execution.

Problems:

� No priority inheritance among processes/threads,
and no priority tracking from user threads to sys-
tem/network protocol stack threads.

This makes real-time end-to-end scheduling with
network communication very di�cult. For exam-
ple, order of execution of socket level calls do not
necessarily respect the priorities assigned to the
threads which make the socket calls.

� Limited number of priorities.

This implies that we cannot use a unique priority
for all the real-time tasks.

� No speci�c support for specifying and guaran-
teeing timing constraints for tasks besides basic
priority-based scheduling.

This implies that we must assure (beforehand)
that the priority assignment policies are guaran-
teed to meet the timing constraints.

Given these features and problems, the research
question we focus on is \How can we alleviate the
problems using the features?". Note that some oper-
ating systems may only have a subset of the problems
listed above. Our goal is to come up with solutions
that are general enough to be employed on any o�-
the-shelf systems.

5 Data Transfer Support Provided by

MidART
MidART supports a real-time application's end-to-

end data transfer requirements with a set of easy-to-
use communication service programming interfaces. A
key service provided by MidART is the Real-Time
Channel-Based Re
ective Memory (RT-CRM) [16].

DPA-thread i

DPA-thread_0

Reader’s thread ithread
Writer’s

Writer’s Node

Network

Reflective
memory area

(local copy)

Reader’s Node

area
memroy

Reflective

Figure 1. RT-CRM High Level Architecture

Figure 1 depicts the high level architecture of RT-
CRM. RT-CRM is an association between a writer's
memory and a reader's memory on two di�erent nodes
in a network with a set of protocols for memory chan-
nel establishment and data transfer. A writer has a
memory area where it stores its current data (e.g., a

PLC stores all the sensor data), while a reader estab-
lishes a corresponding memory area on its own local
node to receive the data re
ected from the writer (e.g.,
an operator station receives and displays monitoring
data). Data re
ection is accomplished by a Data Push
Agent (DPA) residing on the writer's node and sharing
the writer's memory area. This agent represents the
reader's QoS and data re
ection requirements. A vir-
tual channel is established between the agent and the
reader's memory area, through which the writer's data
is actively transmitted and written into the reader's lo-
cal memory area by a Data Receive Agent (DRA). In
this architecture, we support the following features:

� A reader memory area may be connected to mul-
tiple remote writer memory areas simultaneously.
However, at any moment only one writer is per-
mitted to write into the reader's memory area via
the associated agent. The selection of the par-
ticular writer at any time is done via Selective
Channel protocols [13] 1.

� A writer memory area may be connected to
many remote reader memory areas simultane-
ously. Data is pushed to each reader according
to their individual requirements.

In particular, given a re
ective memory area
ReMA, since a DPA is a separate thread of con-
trol from the writer's application thread, RT-CRM
can support (a) Synchronous as well as Asynchronous
data push operations and (b) Blocking as well as Non-
Blocking Read operations.

For more details of RT-CRM, readers are refered to
[16]. The uniqueness of MidART lies in the simplicity
of services provided and the
exibility of data re
ec-
tion models. This simplicity leads to ease of under-
standing and ease of use by application builders, while
its
exibility su�ciently serves the needs of the class of
real-time applications MidART is designed for. Specif-
ically, with the set of data push and reception opera-
tion modes provided by MidART, we can support the
application requirements described in Section 3 with
many combinations of operation modes. Table 1 lists
two possible such combinations { SB (Synchronous
Blocking) and AN (Asynchronous Non-blocking).

6 Server-based User Level Scheduling

In this section, we will present solutions for the
challenges listed in the Introduction, i.e., mapping
of application requirements into schedulable entities,

1Selective Channels allow applications to dynamically choose
the remote node(s) to which data is to be sent or from where
data is to be viewed. This is accomplished via a set of chan-
nel start and stop protocols, and channel bandwidth resource
overbooking schemes.

Modes Data Type Deadline Application

SB Sporadic G Command
AN Periodic G Trend graph
SB Sporadic G Plant data
AN Periodic G Video/Audio
SB Sporadic NG Background

Table 1. S = Synch., A = Async., B = Blocking, N
= Non-blocking, G = Deadline Guaranteed, NG =
No Guarantee.

end-to-end scheduling with limited number of priori-
ties and accommodating both real-time and non-real-
time application tasks in the same system, on commer-
cial o�-the-shelf platforms. We �rst describe how ap-
plication real-time requirements are mapped into sys-
tem schedulable entities (tasks). Our mapping scheme
accommodates the precedence constraints imposed by
the communicating application tasks. Then we pro-
ceed to present our user level scheduling method which
is a combination of three schemes | server-based ex-
ecution for task communication, rate controlled uni-
form size messages and a simpli�ed form of dual pri-
ority scheduling [6].

6.1 Model Precedence Constrained Tasks
with Release Jitter

In general, when applications need to communi-
cate over IP across a LAN, the end-to-end compu-
tation and communication entities include the appli-
cation threads that generate/consume the messages,
socket level send and receive, network interface and
network transmission. In particular, Figure 2 de-
picts the tasks involved in an end-to-end scenario2.
The Application writes and reads are application
processes/threads that include MidART library calls
M Read and M Write [7]. ReMA is the Re
ective
Memory Area, set up as shared memory between the
applications and MidART. DPA and DRA use sockets
for communication over UDP/IP. mbuf is the memory
used by the sockets. Since we have no control over the
network interface and network transmission, these two
have been merged into the black box called Network.
C x is the worst case computation/communication
time of the respective task entity x. So, in our nomen-
clature, application read/write threads, DPAs, and
DRAs are all tasks that must be explicitly scheduled.

End-to-end can be classi�ed into application-to-
application (A-to-A) , and memory-to-memory (M-
to-M) [16]. Some of the application activities, such
as command-and-control, require A-to-A delay bound

2This is a simple pictorial representation. The computation
time and memory size are not drawn to scale.

ReMA

reads

ReMA
Application Application

DPAwrites

mbuf

C_ntwk

A-to-A delay bound

M-to-M delay bound

P_ata

P_mtm

Network

C_read

IP send DRA

mbuf

IP recv

C_DPA C_DRAC_write

Figure 2. End-to-end computation and com-
munication.

(i.e., deadline) guarantees, whereas others, such as
trend graphs, only require M-to-M guarantees. To
support A-to-A, we must schedule all the tasks from
application writes to application reads as a precedence
constrained task graph. On the other hand, to support
M-to-M, we can schedule application writes and reads
independently, while treating all the rest of the tasks
as one precedence constrained task set. Therefore, in
Figure 2 P ata and P mtm are the periods of an A-to-
A task set and a M-to-M task set respectively. Note
that by de�nition, the synchronous data push as well
as the blocking read modes impose precedence con-
straints between the tasks involved, while the asyn-
chronous data push and the non-blocking read modes
support independent task representation naturally. In
particular, a precedence constraint exists between an
application write and DPA for synchronous mode, and
between DRA and an application read for Blocking
mode.

To enable the end-to-end scheduling (for both A-
to-A and M-to-M) on any platform with only priority-
based scheduling support, we model precedence con-
strained tasks as independent periodic tasks with re-
lease jitter as follows.

� Let Jy be the jitter of task entity y.

� In the case of A-to-A:

Jwrite = 0, JDPA = Cwrite,
JDRA = JDPA + CDPA + Cntwk,
Jread = JDRA + CDRA.

� In the case of M-to-M:

Jwrite = 0, Jread = 0,
JDPA = 0, JDRA = CDPA + Cntwk.

To map application timing requirements into sys-
tem schedulable components, we take the following
approach:
� Application writers and readers specify their peri-
ods/delay bounds, synchronous or asynchronous
data reception, as well as blocking or non-
blocking data retrieval semantics.

� With reference to Table 1, timing requirements
are mapped as follows:

(1) SB application: The writer's period is used for
all the tasks end-to-end, and the release jitters
of tasks are calculated according to the A-to-A
case as above. Only if the required deadline is
larger than the response time is the application
admitted.

(2) AN application: Reader and Writer will
have their independent periods and delay bounds.
Computation and communication tasks CDPA

and CDRA will use reader's period, while their
delay bound/deadline Dx is calculated as:

{ DDRA = Dread � Cread

{ DDPA = Dread � Cread � CDRA � Cntwk

Their respective release jitter will be calculated
according to the M-to-M case as described above.

� All the C x values are derived via a MidART pro-
�ler which is described in Section 7.2.

6.2 Server-based Execution of Task Com-
munication

Below we show how a \communication server" can
be used to handle several problems at once: mes-
sage sending and receiving at the priority of the send-
ing/receiving process priority, minimizing priority in-
version, and dealing with limited operating system
priority levels. Our main focus will be the schedul-
ing of the application readers, writers and the DPAs.
DRAs are currently executed using a simple event
driven model, that is, we do not explicitly account
for the priority of the received messages. Our intent
is to study whether the receiver will obtain the speci-
�ed timing requirements, such as periodic data recep-
tion, through our rate control and explicit scheduling
schemes of message handling on the sender side only.
As corroborated by the experimental results in Sec-
tion 7.3, the solutions described here in the context of
DPAs implicitly address the corresponding scheduling
problems for message reception by DRAs.

In order to support applications with end-to-end
timing constraints, we need to ensure that high prior-
ity messages will not be blocked { for an unpredictable
amount of time { by a low priority message transmis-
sion. MidART decouples applications and their com-
munication needs by using DPAs to carry out the data
re
ection and DRAs for message reception on behalf of
the application threads. The application threads may
be assigned priorities that are entirely di�erent from
the priorities of their data messages for better system
performance. In this case, priority tracking is needed
between the DPA and the messages. As we discussed
in Section 4, general purpose operating systems do not

support such priority tracking. To alleviate this prob-
lem, we have developed a server-based approach for
communication over sockets.

The server is a message transmission manager |
all network communication is handled by the server.
The server knows the priorities of the applications that
are requesting message transmission and schedules the
messages (more speci�cally, the DPAs that push the
messages) such that priority tracking is achieved. It is
worth noting that whereas many of today's real-time
schedulers only schedule with respect to the abstract
notion of time, thereby simply acting as \capacity"
managers, our server not only schedules the message
transfers but also actually carries out the communi-
cations on behalf of the applications. This allows us
to alleviate the priority inversion problem for message
handling.

Speci�cally, we provide application interfaces to
specify the timing and message size requirements of
an application. Then the server handles the socket
establishment and schedules the message transmis-
sion according to the speci�cation. Allowing users
to specify the requirements of application components
in terms of timing, data and relationships among
tasks, such as periods/rates, data size, delay/response
bounds, and precedence relations is a much more in-
tuitive and e�ective proposition than requiring appli-
cation designers to assign relative priorities to their
threads/processes. Then the user speci�ed real-time
requirements are translated into unique priority lev-
els to be used only within the server. This approach
also alleviates the problem of limited priority levels
inherent in a typical operating system. Thus, we
assign and manage tasks' priorities explicitly inside
our server, while providing the users with the abil-
ity to specify task timing, message size and prece-
dence/synchronization constraints.

In summary, the above server based approach is
able to minimize the e�ect of priority inversion, handle
priority tracking and manage with limited operating
system priority levels, and permit user speci�ed timing
requirements.

6.3 Integrating Real-Time and Non-Real-
Time Tasks

A simpli�ed form of the dual priority scheduling
algorithm [6] is used to accommodate real-time and
non-real-time tasks in our server. In Section 3, we de-
scribed �ve types of application activities. They rep-
resent applications with real-time constraints, as well
as applications without real-time requirements. Real-
time applications demand synchronous(S) or asyn-
chronous(A) data transmission and blocking(B) or
nonblocking(N) data reception. In general, the syn-

chronous ones constitute the more urgent time critical
tasks, while the asynchronous ones are periodic in na-
ture. The non-real-time activities can be serviced with
best e�ort. Based on these observations, we have de-
veloped the following scheme for mapping applications
into a set of unique priorities, one for each application
type, namely, SB real-time, AN real-time, and non-
real-time.

� All the priority assignments fall into four priority
bands { P highest > P high > Pmid > P low. (The
speci�c operating system priority levels these
bands occupy depends on the number of priority
levels available. In the next section, we discuss
how these bands are realized with NT.)

� All tasks of an SB application are assigned to the
P highest band and will have priorities according to
the deadline monotonic algorithm, That is, within
the P highest band, SB tasks have unique prior-
ities, decided based on their deadlines [12]. In
many applications, e.g. plant monitoring, there
are only one or two such entities in a system.

� All tasks of an AN application with timing con-
straints will be assigned a priority in the P high

band according to the deadline monotonic algo-
rithm.

� All the non-real-time activities are assigned a pri-
ority in the Pmid band. These priorities can be
either assigned according to their requested ex-
ecution rate, or randomly if they do not specify
any rate.

Before we provide details concerning our server's
operation, it is necessary to give an overview of the
dual priority approach. Basically, it executes real-time
tasks such that they will not miss their timing con-
straints while at the same time improving the respon-
siveness of the system to non real-time tasks (com-
pared to always giving real-time tasks the higher pri-
ority). To this end, each real-time task normally exe-
cutes with a priority lower than that assigned to non
real-time tasks. When the time comes for a real-time
task to execute in preference to a non real-time task
so that the real-time task will not miss its deadline, its
priority is increased to be above that of the non real-
time task. This time, called the priority promotion
time, PTi for each invocation of a task Ti with dead-
line Di is calculated according to the iterative formula
(5) in [6] as follows:

PTi = Di �Ri (1)

Ri = wi + Ji (2)

wm+1
i = Ci + So + [

X

j2hp(i)

d
wm
i + Jj

Tj
eCj (3)

where iteration starts with w0
i = 0, and ends when

wm+1
i = wm

i , and Ri is the worst case response time.
Thus, promotion times take into consideration the re-
lease jitter Ji described in Section 6.1 and the one-
quantum blocking time So due to the transmission of
a message from a lower priority task (described in the
next section).

In other words, the server executes at the lowest
priority P low servicing real-time tasks until one of two
events happens { the arrival of a non-real-time task,
or the occurrence of the promotion time of a real-time
task.

� Upon the arrival of a non-real-time task request-
ing service, the server's priority will be raised to
Pmid, and will stay at Pmid as long as there are
still non-real-time tasks to service, or until the
promotion time of one or more real-time tasks
occurs.

� When the promotion time of one or more real-
time tasks occurs, the server's priority is raised
to P high or P highest depending on whether the
task is an SB task or an AN task. In some sense,
P highest can be viewed as lying at the high-end
of the P high band. This is the view taken by the
implementation described in the next section.

In summary, our server services all the communi-
cation tasks according to their respective periodicity,
data size and priority. It implements the dual priority
algorithm such that each DPA is explicitly scheduled
within the server. This is done using four unique op-
erating system supported priorities P highest, P high,
Pmid, and P low.

As we shall see in Section 7, our current implemen-
tation uses a simpli�ed form of the above dual priority
scheduling approach. Basically, we do not execute a
real-time task until its promotion time. An implemen-
tation that is faithful to the above description of dual
priority scheduling is part of our future work.

6.4 Rate Controlled Uniform Size Mes-
sage

Using the server described above, there is still a
possibility of a high priority message being blocked
by a lower priority message for the duration of the
time to transmit one message. In the worst case, this
blocking time can be quite long if message sizes are
not bounded. To limit this blocking time to a small
quantum, we adopt a uniform message size to allow
message transmission with �xed preemption points.
This way, a high priority message will be blocked for
at most one quantum.

Through a MidART pro�ler, we identify the opti-
mal message size So for any particular network setup.
The message size serves as the non-preemptive unit of

computation time and transmission time (Henceforth,
we use So as both the unit message size and the time
needed to send and receive a message of this size.).
All data to be pushed is divided into messages of this
unit size.

7 Implementation and Experimental

Results
To evaluate our approaches for satisfying end-to-

end constraints, we have implemented the server-
based dual priority scheduling in MidART on Win-
dows NT 4.0. In this section, we �rst describe our
implementation, and then present our experimental
results from this implementation.

7.1 Asynchronous DPA Server (ADS)
The ADS depicted in Figure 3 is part of MidART's

local server [7]. The ADS is made up of two active
threads of control and various objects that facilitate
the communication between the two threads and sup-
port the user-level scheduling schemes described in
Section 6. The two active threads are called Dis-
patcher and Pusher. The relevant objects include the
Promoted Push Queue, the Push Queue and the DPA
Server Object.

to sockets

Periodic timer

activations

to sockets

Dispatcher

Thread

Pusher Thread

@ High Priority

Pusher Thread

@ Low Priority

call-
back

Requests from MidART lib.

(M_attach, M_detach)

Raise/lower
PriorityRelease

Promotion

DPA

Server Object

Promotion
times

Push Queue

Promoted Push
Queue

Figure 3. Dual Priority DPA Server.

Each agent that pushes the data stored in a ReMA
resides either in the Promoted Push Queue or in the
Push Queue. DPAs associated with ReMA entries
that have been released (i.e., their current periods
have started), but whose promotion time has not ar-
rived yet, reside in the Push Queue.

The Pusher thread, as the name suggests, executes
on behalf of a DPA. It pushes the data associated with
a ReMA into the network. It (is scheduled by the sys-
tem such that it) transmits the data associated with
these entries only when there are no soft tasks execut-
ing in the middle priority band.

The Dispatcher acts as the rate controller and is
responsible for moving a DPA into the Promoted Push
Queue when its promotion time arrives (this involves a

simple pointer manipulation). In our implementation,
the above operation is equivalent to raising the priority
of a DPA thread from P low to P high in Dual Priority
scheduling although our approach avoids the actual
cost of priority setting in many cases when the server
is already in P high and one or more promotion times
occur.

This thread uses the Multimedia Timers in periodic
mode to promote a DPA in a timely manner. Specif-
ically, the Dispatcher runs at the TIME CRITICAL
priority level supported by Windows NT. It blocks
waiting for the callback function associated with the
timer to indicate the occurrence of the promotion time
for a particular DPA. The communication between the
callback function and the Dispatcher thread uses the
message queues provided by the Windows NT operat-
ing system.

The Pusher works at priorities HIGHEST, NOR-
MAL, and BELOW NORMAL in the REALTIME
priority class [15], servicing non-real-time tasks at
NORMAL priority and the other two corresponding to
P high and P low respectively. This thread selects the
promoted DPA from the Promoted Push Queue and
transmits the associated messages divided into blocks
of uniform size So . The entries in the Promoted Push
Queue and the Push Queue are sorted based on their
respective priorities, which allows us to deal with the
problem of limited priority levels within the operating
system. The separation of functionality between the
Dispatcher and the Pusher prevents or minimizes pri-
ority inversion at the socket level by ensuring that high
priority data push requests su�er blocking time due to
priority inversion for only the duration of pushing one
data block of size So.

7.2 Pro�ler

To service real-time tasks, we need to know the
computation time, communication overhead and prop-
agation delay for the scheduler to be e�ective. Our so-
lution is to use pro�ling at system con�guration time
on the speci�c platform that our scheduler will be
used. Our pro�ler toolkit consists of two application
programs, which make use of MidART's services to set
up a memory-to-memory data transfer between two
di�erent nodes in a networked environment. These
programs are run with a minimally instrumented ver-
sion of MidART's code that takes time stamps at dif-
ferent points on the data transfer path between the
two nodes.

One of the programs of the toolkit pro�les the end-
to-end timing parameters of di�erent entities involved
in the networked application. The entities that can be
pro�led in addition to the application programs are
(1) the M Write and M Read MidART library calls,

(2) the DPA and DRAs, and (3) the Server. Data
collected by this program provides the following infor-
mation:

� Application-to-application Round Trip Time.

� Memory-to-memory Round Trip Time.

� Computation time and overhead of ADS's sched-
uler.

� Jitter introduced at each stage of the data path.

� Time to complete library calls M Write and
M Read.

� Time to push the data associated with a ReMA.

� Optimal block size for pushing messages.

The other program included in the toolkit calcu-
lates the receiver throughput at the reader node. This
is used to calculation bu�er allocation. The timing
and bu�er information collected by the toolkit can be
utilized e�ectively by the run-time scheduler and ad-
mission control algorithms.

7.3 Experimental Results
We have done extensive experimentation in study-

ing the feasibility of our user level scheduling schemes.
This section presents some of these results. All the ex-
periments were carried out on a Pentium II PCs with
Windows NT 4.0 operating system over 100BaseT Fast
Ethernet. We have isolated the network segment from
the rest of the LAN for running all the experiments.
The two PCs we used in the experiments have proces-
sor speeds of 333MHz and 266MHz respectively. All
the experiments reported in this section have been run
on both machines to verify that the observations are
not machine dependant.

7.3.1 Alleviating Priority Inversion
Figures 4 to 7, we show how our server can allevi-
ate the possibility of priority inversion at the socket
level. T1 is a high priority task sending messages of
size 1K bytes with a period of 20ms, while T2 is a
low priority task sending messages of size 64K with
a period of 10ms. These two tasks model a scenario
where a command-and-control task with high priority
and small message size coexists with another periodic
task with large data transfer. Figures 4, 5, 6, and 7
show the results for each of the tasks when they were
both executing in the system. The �gure presents the
time between data pushes for 1000 executions. When
they execute on Windows NT without our user level
server's scheduling support, Figures 4 and 6 show how
the data sending periods deviate widely from the ex-
pected periods. At many points, we can observe that
the high priority task's data sending periodicy require-
ment is violated. Once we place the two tasks under
the control of our server's scheduler, they show a re-
markable di�erence in their execution pattern, i.e., in

Figures 5 and 7, one can see how their rates are stabi-
lized. Note that the 1ms deviation from the 10ms or
20ms periods in these �gures are due to the 1ms timer
accuracy provided by Windows NT.

7.3.2 Message Block Size So

As described in Section 6.4, if we do not bound the
message sizes, a high priority task can potentially be
blocked for a very long time. Thus we have carried out
experiments to determine the value for So. So should
not be too large in order to minimize the blocking
time, and it need not be smaller than 1ms since that
is the accuracy of the timer provided by Windows NT.

Figure 8 shows the time taken to send messages as
a function of the message sizes from 1K to 60K. In
this experiment, we have recorded the overhead of (1)
sending each message in its entirety, (2) dividing each
message into 1K size data blocks to send, and (3) di-
viding each message into 8K size data blocks to send (if
the message is greater than 8K). Sending a message in
its entirety is basically the overhead cost of the socket
calls plus UDP/IP packetization, while dividing up a
message will incur extra MidART overhead. As one
can see, a message of size 60K can take up to 6ms to
send in its entirety. This will be too long a blocking
time for many real-time tasks. The �gure also shows
that dividing messages up into 1K impose too much
overhead for large messages. Uniform message size of
8K incurs only very small amount of overhead com-
pared with not dividing the message up at all. We
have also done experiment on the receiver side to ver-
ify that the 8K is a good choice for the value of So.
The receiver throughput is shown in Figure 9, where
it can be seen that 8K data size basically performs as
well as the messages in their entirety, while 1K data
block sizes reduces the throughput to only one third
of what 8K size can achieve.

7.3.3 User Level Scheduling Overhead
Figure 10 shows the major overhead of our scheduler
as a function of the number of timers being used.
Since we support periodic tasks using the dual priority
scheduling algorithm, periodic timers are used in our
implementation for the promotion time noti�cation.
As shown in the �gure, 16 timers impose an over-
head of 0.27ms. The maximum standard deviation
was 0.061 for all the timer overhead data points. From
these tests, it appears that our user level scheduling
scheme can easily be used for tasks with a few mil-
liseconds timing requirements.

7.3.4 Receiver Periodicity
Since the DRAs are event driven, we need to verify
that our user level scheduling of DPA and message
rate control can actually help the DRAs to maintain
the application requested data reception periodicity.

|
0

|
200

|
400

|
600

|
800

|
1000

|15

|16

|17

|18

|19

|20

|21

|22

|23

|24

|25

|26

 Time between data pushes for T1

 Sample #

 T
im

e
(m

se
c)

���

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

�
�

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

�

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

���

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

Figure 4. T1 without server scheduling.

|
0

|
200

|
400

|
600

|
800

|
1000

|15

|16

|17

|18

|19

|20

|21

|22

|23

|24

|25

|26

 Time between data pushes for T1 with Dual Priority

 Sample #

 T
im

e
(m

se
c)

���

�

���
�����������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

�
���
�
����������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

���
�

�
���������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

���������������

�

���������������

�

��������������

�

�
�

�
���������

Figure 5. T1 with server scheduling .

|
0

|
200

|
400

|
600

|
800

|
1000

|5

|7

|9

|11

|13

|15

|17

|19

|21

|23

|25

 Time between data pushes for T2

 Sample #

 T
im

e
(m

se
c)

�

��

�

�

��

�

�

���

�

��

�

�

��

�

�

���

�

��

�

�

��

�

�

���

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

���

�

��

�

�

��

�

�

��

�

�

��

�

�

�

��

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

������

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

���

�

��

�

�

��

�

�

���

�

��

�

�

��

�

�

���

�

��

�

�

�

�

�

�

�

��

�

�

��

�

�

��

�

�

���

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

�

��

�

��

�

�

��

�

���

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

�

���

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

�

�

�

Figure 6. T2 without server scheduling.

|
0

|
200

|
400

|
600

|
800

|
1000

|5

|7

|9

|11

|13

|15

|17

|19

|21

|23

|25

 Time between data pushes for T2 with Dual Priority

 Sample #

 T
im

e
(m

se
c)

�
������

�

������������������������������

�

������������������������������

�

�������������������������������

�

������������������������������

�

������������������������������

�

�������������������������������

�

������������������������������

�

������������������������������

�

�������������������������������

�

������������������������������

�

������������������������������

�

�������������������������������

�

������������������������������

�

�������������������������������

�

������������������������������

�

������������������������������

�

�������������������������������

�

������������������������������

�

������������������������������

�

�������������������������������

�

������������������������������

�

����������������
�
�
������������

�

�������������������������������

�

������������������������������

�

������������������������������

�

�������������������������������

�

������������������������������

�

������������������������������

�

�������������������������������

�

������������������������������

�

������������������������������

�

�����������������������������

Figure 7. T2 with server scheduling.

In this experiment, 14 end-to-end real-time tasks exe-
cute in AB mode (Asynchronous data push and Block-
ing read). The 14 writers simultaneously communi-
cate with 14 real-time readers on a remote machine
for 2.5 minutes. Each writer sends a message of 8KB
periodically. The period for the end-to-end task is
calculated according to the following formula where
BaseRate = 30ms and Step = 20ms:

� Ti = BaseRate+ Step � i

Figure 11 plots the average periodicity for the two
highest rate readers, i.e., T1 and T2. The standard
deviation for T1 is 1.7 and for T2 is 1.5. The periodici-
ties for all the other readers are similar or better than
these two tasks since their periods are less demanding
on the system. We can see that the readers are able to
obtain their respective required periodicity very well.

7.3.5 Non-Real-Time Task Performance

Our last experiment integrates real-time and non-real-
task execution. We need to ensure that non-real-time
tasks do receive good service using our user level dual
priority server, while real-time tasks maintain their re-
quired timing requirements. To evaluate this, we have
added a non-real-time application, which transmits a
�xed amount of data from one node to another using
MidART's services, to the set of 12 real-time writers
and readers as speci�ed in the last section.

The non-real time application sends a total of 60MB
of data from one node to the other in blocks of 8KB
every 10ms. Figure 12 shows the time that elapses at
the receiver from the arrival of the �rst 8KB block to
the last one as the number of reader applications in-
creases from 1 to 12. If there are no real-time tasks
at all, the response time for the non-real-time is 75
seconds. Figure 12 shows that when there is one real-

� � Single
� � 1K Blocks
� � 8K Blocks

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
20

|
30

|
40

|
50

|
60

|0

|2

|4

|6

|8

|10

|12

 Average A-DPA push time for different block sizes. (333MHz PC)

 ReMA size (KB) in Log Scale

 T
im

e
(m

se
c)

� �
�

� � � �
�

�

�

�

�

�

�
�

�

�
�
�
�
�

�

�

�

�

�

� �
�

�
� � �

�

�

�

�

�

�

Figure 8. Server Overhead for Sending.

 Single
� � 1K Blocks
� � 8K Blocks

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|5

|10

|15

|20

|25

|30

|35

|40

|45

|50

|55

|60

|65

|70

 ReMA size (KB)

 M
B

it
s/

se
c

�

�

� �
� �

�

�

�

� � �

Figure 9. Receiver Throughput.

 AVG

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|0.0

|0.5

|1.0

|1.5

|2.0

 Execution time of timer callback and delivery of message

 # of Active Periodic Timers

 T
im

e
(m

se
c)

Figure 10. User Level Server Timer Overhead.

� � T1
� � T2

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|0

|10

|20

|30

|40

|50

 Average Rate at Reader

 # of Receivers

 T
im

e
(m

se
c)

� � � � � � � �

� � � � � � �

Figure 11. Receiver Periodicity.

time reader in the system writing 8KB of data every
50ms, the response time for non-real-time application
is 75.25 seconds. As the number of real-time read-
ers increases, the response time for the non-real-time
application does increase, as expected, from 75.25 to
75.86 seconds. A further delay of the response time is
observed when the base period of the real-time tasks
decreases from 50 to 30 ms. In this same experiment,
we observed that all the real-time tasks maintained
their periodicity very well.

8 Conclusion and Future Work

The work described in this paper is motivated by
the emerging need to ensure end-to-end predictabil-
ity of real-time communicating tasks in COTS-based
distributed systems. The solutions developed to over-
come the problems faced in utilizing COTS platforms
have been implemented and evaluated using a PC-

based Windows NT system with Ethernet as the LAN.
Our implementation has been carried out in the con-
text of MidART, a real-time network middleware. Ex-
perimental results show how our server-based solution
alleviates the problems such as those that occur due to
limited operating system priority levels, priority inver-
sion, and the presence of non-real-time applications.

Since regular Ethernet and UDP/IP are used un-
derneath the MidART implementation reported in
this paper, exact determinism in end-to-end task com-
munication is not possible. Under normal operating
conditions where Ethernet tra�c load is less than 60%,
we can expect the system to be fairly well behaved.
To achieve determinism end-to-end, we need to in-
corporate some of the more recent real-time solution
for the network layer (e.g., [18, 19]) and the protocol
stack. One of our future goals is porting our user level
scheduler onto Linux where we can achieve kernel level

� � 50 msec
� � 30 msec

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|75.0

|75.2

|75.4

|75.6

|75.8

|76.0

|76.2

|76.4

 # of Receivers

 R
es

p
o

n
se

 T
im

e
(s

ec
)

�
�

�

�

�

�

�

�
�

�

�

�

�

�

Figure 12. Response Time of Non-Real-Time
Application.

scheduling.

Currently we are also working on schedulability
analysis techniques to develop the necessary admis-
sion control policies for readers as well as writers to
work with the scheduling techniques reported here.
We are also developing an implementation that fully
realizes the potential for improved resource utilization
a�orded by the dual priority approach.

References
[1] M. Barabanov and Victor Yodaiken. Real-Time

Linux. In Linux Journal, March 1996.

[2] W. Bolosky, R. P. Fitzgerald, and J. Douceur. Dis-
tributed Schedule Management in the Tiger Video
Fileserver. In the 16th ACM Symposium on Operating
Systems Principles, October 1997.

[3] Dick Caro and Rich Mullen. Ethernet as a Control
Network. CONTROL Magazine, Putman Publishing
Co, February 1998.

[4] Deborah Claymon. Control Freaks: Control networks
will regulate every factory, house, and o�ce . The Red
Herring, March 1998.

[5] H. Custer. Inside Windows NT. Microsoft Press,
1993.

[6] R. Davis and A. Wellings. Dual Priority Scheduling.
In IEEE Real-Time Systems Symposium, December
1995.

[7] O. Gonzalez, C. Shen, I. Mizunuma, and M. Takegaki.
Implementation and Performance of MidART. In
IEEE Workshop on Middleware for Distributed Real-
Time Systems and Services, December 1997.

[8] P. Goyal, X. Guo, and H. M. Vin. A Hierarchical
CPU Scheduler for Multimedia Operating Systems.
In USENIX Symposium on Operating Systems Design
and Implementation, October 1996.

[9] VenturCom Inc. Real-Time Extension 4.1 for Win-
dows NT, http://www.venturcom.com. 1997.

[10] K. Je�ay, F. D. Smith, A. Moorthy, and J. Anderson.
Proportional Share Scheduling of Operating System
Services for Real-Time Applications. In 19th IEEE
Real-Time Systems Symposium, December 1998.

[11] M. Jones and J. Regehr. Results from a Latency
Study of Windows NT Or ... The Problems You're
Having May Not Be the Problems You Think You're
Having. In Work in Progress, 19th IEEE Real-Time
Systems Symposium, Madrid, Spain, Decmber 2-4
1998.

[12] J. P. Lehoczky. Fixed Priority Scheduling of Periodic
Task Sets with Arbitrary Deadlines. In 11th IEEE
Real-Time Systems Symposium, December 1990.

[13] I. Mizunuma, C. Shen, and M. Takegaki. Middle-
ware for Distributed Industrial Real-Time Systems on
ATM Networks. In 17th IEEE Real-Time Systems
Symposium, December 1996.

[14] J. Nieh and M. Lam. The Design, Implementation and
Evaluation of SMART: A Scheduler for Multimedia
Applications. In 16th ACM Syposium on Operating
Systems Principles, October 1997.

[15] K. Ramamritham, C. Shen, O. Gonzalez, S. Sen, and
S.B. Shirgurkar. Using Windows NT for Real-Time
Applications: Experimental Observations and Rec-
ommendations. In IEEE Real-Time Technology and
Applications Symposium, June 1998.

[16] C. Shen and I. Mizunuma. RT-CRM: Real-Time
Channel-Based Re
ective Memory. In IEEE Real-
Time Technology and Applications Symposium, June
1997.

[17] I. Stoica, H. Abdel-Wahab, K. Je�ay, S. Haruah,
J. Gehrke, and C. Plaxton. A Proportional Share
Resource Allocation Algorithm for Real-Time, Time-
Shared Systems. In 17th IEEE Real-Time Systems
Symposium, December 1996.

[18] S. Varadarajan and T. C. Chiueh. EtheReal: A Host-
Transparent Real-Time Fast Ethernet Switch. In In-
ternational Conference on Network Protocols (ICNP),
October 1998.

[19] C. Venkatramani and T. C. Chiueh. Design, Imple-
mentation, and Evaluatino of a Software-based Real-
TimeEthernet Protocol. In ACM SIGCOMM, 1995.

	Title Page
	Title Page
	page 2

	User Level Scheduling of Communicating Real-Time Tasks
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

