
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Reconcile UserśGuide

John H. Howard

TR99-14 December 1999

Abstract

Reconcile combines different versions of file directories, propagating all updates between them
and making them identical but never losing updates at one site because of updates performed
at another. Among its applications are: - Road warriors: synchronize files between laptop and
home base This report describes the program in detail, including motivation, basic concepts,
applications, and the programś interface.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1999
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



TR99-14 1 September 1, 1999

MERL – A Mitsubishi Electric Research Laboratory

Technical Report TR99-14 September 1, 1999

Reconcile Users’ Guide

John H Howard

Abstract

Reconcile combines different versions of file directories, propagating all updates between them
and making them identical but never losing updates at one site because of updates performed at
another.  Among its applications are:

• Road warriors:  synchronize files between laptop and home base
• Telecommuters: use a distant file server efficiently
• Power users:  work with a local copy of your files, update the file server occasionally
• Collaborators: safely share working files with peers
• Individuals: make private backups on a removable disk

Reconcile currently runs on (and between) Windows 95, 98, and NT, and Unix (Linux, OSF1,
SunOS, and IRIX64 tested, others likely.)

This report describes the program in detail, including motivation, basic concepts, applications,
and the program's interface.

Copyright © Mitsubishi Electric Information Technology Center America, 1993-1999
201 Broadway, Cambridge, Massachusetts 02139

This work may not be copied or reproduced in whole or in part for any commercial purpose.  Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Mitsubishi Electric Information Technology Center America, of Cambridge, Massachusetts;
an acknowledgment of the authors and individual contributions to the work; and all applicable portions of
the copyright notice.  Copying, reproduction, or republishing for any other purpose shall require a license
with payment of fee to Mitsubishi Electric Information Technology Center America.  All rights reserved.



TR99-14 2 September 1, 1999

Revision History

1. Initial version, TR93-09, June 1993.

2. Revised and reformatted, TR98-09a, July 1994.

3. Major revisions, TR98-04, April 1998.

4. Revised (additional parameters and directives), TR98-04a, June 1998.

5. Revised (minor changes), August 10, 1998.

6. Revised (remote reconciliation), TR98-04b, September 23, 1998.

7. Revised (minor changes), TR98-04c, January 12, 1999.

8. Revised (minor changes), TR98-04d, February 11, 1999.

9. Major revisions (added remote reconciliation, revised user interface, many minor updates),
TR99-14, March 18, 1999.

10. Revised (minor changes), July 9, 1999.

11. Revised (minor changes), August 26, 1999.

12. Revised (identify obsolete options, add –also), September 1, 1999.



TR99-14 3 September 1, 1999

CONTENTS

QUICK START..................................................................................................................5
Installation.........................................................................................................................................................................5
First time setup.................................................................................................................................................................5
Normal operation..............................................................................................................................................................5
Trial Runs .........................................................................................................................................................................5
Ignoring selected files.....................................................................................................................................................5

OVERVIEW........................................................................................................................6
Features .............................................................................................................................................................................6
Key concepts:  sites, journals, and versions................................................................................................................6

OPERATION......................................................................................................................8
Read and update individual journals .............................................................................................................................8
Merge journals .................................................................................................................................................................8
Propagate missing actions .............................................................................................................................................8
Purge obsolete versions ..................................................................................................................................................9
Write updated journals ...................................................................................................................................................9
Set the time........................................................................................................................................................................9

REMOTE OPERATION ...................................................................................................9

EXAMPLES.................................................................................................................... 11
Labeling your disks...................................................................................................................................................... 11
Creating a new journal................................................................................................................................................. 11
Making private backups on a removable disk.......................................................................................................... 11
Local copy from a file server....................................................................................................................................... 11
Moving  files between a workstation and a laptop or home computer .................................................................. 12
File sharing without a server...................................................................................................................................... 13
Backing up files by one-way reconciliations............................................................................................................ 13

COMMAND LINE REFERENCE ................................................................................ 14
Syntax..........................................................................................................................................................................14
Options (these apply to the entire command):......................................................................................................14
Modes (these apply only to the single site they precede on the command line): ...........................................14
Site identification (siteID):........................................................................................................................................15
Multiple reconciliations (-also parameter on command line): .............................................................................16
Obsolete modes and parameters:............................................................................................................................16

FILE FORMATS............................................................................................................. 17
Files used by reconcile................................................................................................................................................. 17
Journal file format........................................................................................................................................................ 17

Header:  Journal of <label>:/<root> (<systype>) - <programID>............................17
Version:  + <timestamp> <name><t> <link> ?mask dt=<digest> <remarks>...........17
Deletion:  - <timestamp> <name><t> ?mask.......................................................................................18
Missing version:  > <timestamp> <name><t> <link> ?mask dt=<digest> ......................18
Missing deletion:  < <timestamp> <name><t> ?mask........................................................................18



TR99-14 4 September 1, 1999

Known site:  $ <timestamp> <sitename> ?mask...............................................................................18
Directive:  #verb <pattern> ...........................................................................................................................18
Subdirectory:  Journal of label:/<root>/<subdirectory> ....................................................18
End of journal:  End of journal .................................................................................................................18

Directives and .reconcilerc files ................................................................................................................................ 19
#ignore <pattern>......................................................................................................................................................19
#alwaysnew <pattern>..............................................................................................................................................20
#deletedirs <pattern>................................................................................................................................................20
#binary <pattern>......................................................................................................................................................20
#text <pattern>...........................................................................................................................................................20
#normal <pattern>.....................................................................................................................................................20
#mapunc <prefix>[$] <replacement>.......................................................................................................................20

REMOTE COMMANDS AND GET/PUT PROTOCOL ............................................ 21
getjournal ...........................................................................................................................................................21
putjournal ...........................................................................................................................................................21
get <name><t> [was <timestamp>] ...................................................................................................21
put <name><t> [was <timestamp>] ...................................................................................................21
rename <name><t> [was <timestamp>] <newname>.................................................................21
move <name><t> [was <timestamp>] <newname> ......................................................................21
delete <name><t> [was <timestamp>] ...........................................................................................21
fixtime <name> <timestamp>.................................................................................................................21
ACK <verb> ...........................................................................................................................................................21
NAK <verb> ...........................................................................................................................................................21
File <name><t> <timestamp> mode=xxx uid=n gid=n <enc>.........................................21
Dir <name><t> <timestamp> mode=xxx uid=n gid=n ...........................................................21
Link <name><t> <timestamp> mode=xxx uid=n gid=n <linkname> ...........................21
End of file <name> ......................................................................................................................................22



TR99-14 5 September 1, 1999

Quick Start

PLEASE READ THE REST OF THIS MANUAL!  It contains valuable information
about what to expect from reconcile and how to use its features.

These instructions assume that you are starting with a directory “/homes/doe” on a file server
named “hercules”, and you want to create and start using a local copy on c:\doe (a local disk
under Windows).

Installation

√ Copy the reconcile program file to an appropriate directory, such as /usr/sbin (for Unix),
c:\winnt\system32 (for Windows NT), or c:\windows (Windows 95 or 98).  You need a copy
on the server as well as the client machine.

First time setup

√ Important!  Make sure your local disk has a unique, descriptive label.

√ Create a journal for the existing directory hercules:/homes/doe with the command:
reconcile -v –c hercules:/homes/doe

This may take a while, as reconcile computes digests of every new file it finds.  It will be much
faster if a journal already exists.

√ Create local copies of the directory and journal, for example on c:\doe:
mkdir c:\doe
reconcile -v hercules:/homes/doe –c c:\doe

Normal operation

To reconcile hercules:/homes/doe and c:\doe with each other, use the command:
reconcile -v hercules:/homes/doe c:\doe

You may wish to put this command in a batch file or on an icon, so that you can click it to run.
Once set up, you may want to schedule it to run every evening automatically.

Trial Runs

To be extra careful after installing a new version, do a trial run with the -n option:
reconcile -n -v hercules:/homes/doe c:\doe

Reconcile will tell you what it would do, without actually doing it.

Ignoring selected files

To prevent reconcile from copying some sorts of files, for example core dumps or browser
caches, create a file named “.reconcilerc” containing directives like:

#ignore *cache
#ignore core



TR99-14 6 September 1, 1999

Overview
Reconcile compares file directories, finds the differences, and updates the directories so that
they all contain exactly the same files.  It does this safely and automatically, requiring user
intervention only when there are unavoidable conflicts between the versions of files stored in
different locations.

Features

Safe updating is accomplished by using a journal of past updates for each directory.  An older
version of a file is deleted only if the journals indicate that the newer version was derived directly
from the older one.  If this criterion is not met, the older version is renamed, rather than being
deleted.  This allows you to inspect the two files and determine how to merge or otherwise
resolve the conflict between them.  Reconcile prints a warning message every time it runs, until
the renamed file is dealt with.

A newer version of a file can safely replace an older one whenever a journal contains both of
them.  This can only happen if the newer version was created by a deliberate act replacing the
older version.  The journaling mechanism also handles deletions  by noting the disappearance of
files as well as the appearance of new versions.  This means that if a file is deleted at any site,
Reconcile can safely delete it at other sites.  This is a key advantage over programs which
simply compare time-stamps on files.  It also avoids relying on synchronized clocks between
computers.

Reconcile is automatic in the sense that it does not require user intervention. It can be invoked
from a batch file, periodically through a system scheduler agent, when you log in or out, or at
other convenient moments.  In its batch mode, Reconcile runs to completion, logging messages
about any conflicts between versions of files or other problems it encounters. In the unusual case
of a conflict that Reconcile can not resolve by itself, it renames one of the conflicting version
with a distinctive name to make manual resolution easier.

Reconcile can ignore certain files, such as backup copies and object files generated by
compilers.  This avoids unnecessary conflicts between files which are derived from other files
rather than being created or updated directly by user actions.

Finally, Reconcile offers cross-platform compatibility.  Versions exist both for Windows and
for Unix.  When copying text-mode files (defined as files containing only white space and
printable characters) between Windows and Unix sites, Reconcile automatically converts line
endings to the form used by the target site.

Key concepts:  sites, journals, and versions

A site is one version or copy of a set of files, organized as a sub-tree of the file system
hierarchy. A typical site might be an individual’s working directory on a particular computer.
The basic purpose of Reconcile is to make several sites identical by safely copying individual
files between them. If you use two computers, you would have a site on each of them.

One should not think of a site as being the total disk storage on any one computer.  Computers
contain many unrelated directories, including the operating system, installed software, personal



TR99-14 7 September 1, 1999

working files, and shared projects. File systems typically glue these together into a single
hierarchy. Nevertheless, one can usually identify sub-trees of the overall hierarchy with specific
individuals, projects, or products.  Each such subtree is a potential site.

A site may be stored in the internal disk of a computer, a portable medium such as a floppy
diskette or Zip disk, on a network file server, or on another computer accessible via the Unix
“rsh” command.  Sites accessible directly through the local file system are called local sites,
even if they are actually mounted from a file server.  Sites accessible via the rsh command are
called remote sites.  All files and subdirectories beneath a site’s top-level directory are part of
the site unless they are explicitly excluded.  If the file system supports symbolic links, the links
are included in the site, but the objects they refer to are not.  (Reconcile preserves symbolic
links for use by Unix system but does not attempt to copy them to Windows systems.)

To do its work, Reconcile creates or updates a journal file for each site, listing the history and
status of every file at the site.  A journal is actually a text file listing the successive versions of
files contained in the root directory and each sub-directory of the site.  A new version of a file
is created every time the contents of the file are modified, or if the file is deleted.  Thus a version
describes both an action, which can be either "update" or "delete", and the contents of the file.
By including deletion operations in journals Reconcile can (safely) propagate deletions to other
sites, again checking for conflicts.

Journal entries for versions of files contain the action, file name, a time-stamp (the date and
time the file was most recently modified) and a digest, which is a checksum of the entire file
computed in such a way that it is extremely unlikely that two different files would ever have the
same digest.  In order to promote portability between UNIX, Windows, and Macintosh
computers, Reconcile ignores differences in line endings (CR, LF, or CRLF) when computing
digests of text files, and (optionally) translates line endings when copying text files between
systems of different type.

Reconcile only uses the time-stamp to determine when it should compute a new digest.  It does
not depend on times being synchronized between computers, and is even insensitive to arbitrary
changes in the clock on one computer. Since time stamps have a resolution of a second or two,
it is extremely unlikely that two different versions of the same file would have the same
timestamp.

It might be a good idea to include other file information, such as protection flags, in the journal,
but this is currently not done in Reconcile because of the lack of consistency between Windows
and UNIX in this area.  Reconcile does copy protection information along with files between
same systems.



TR99-14 8 September 1, 1999

Operation
Reconcile operates in several phases sequentially:

Read and update individual journals

Reconcile starts by reading the entire existing journal for each site.  It brings the journal up to
date by traversing the file tree, comparing the files actually present with the files listed in the
journal.  When they disagree it creates new journal entries reflecting creation, modification, and
deletion of files at each site.

Deletions are inferred from the absence of an actual file for which a journal entry exists.  New
files and updates to existing files are detected by comparing hash codes.  For efficiency’s sake,
the hash code is recomputed and compared only if the timestamp changes.  This approach can
be fooled if two different versions of a file have the same timestamp; a very unusual possibility.
It is not fooled by the reverse case, namely that the same data has two different timestamps.  In
this case reconcile simply corrects one of the timestamps without actually copying the data.

Merge journals

Next, reconcile merges the journal entries for each file by finding a maximum matching
subsequence of entries among all the sites.  The main purpose of this is to find the last common
entry for each file, that is, the most recent matching entry among all sites.  Therefore the merging
operation prefers matching the most recent version of each file in the journal over than matching
earlier versions.

Propagate missing actions

If the last matching entry of a file is present at all sites, then they are already consistent and no
action is needed.

• If there is an entry present at all sites, it is definitive evidence that any subsequent entries
represent intentional creation, modification, or deletion of the file.  Entries after the common
entry which match each other but are missing at some of the sites reflect creation,
modification, or deletion operations that have occurred at only some of the sites.  Any such
matching subsequent entries are replicated to the other sites by copying or deleting files as
required.

• If two sites has different entries after the last common entry, there is a conflict.  In this case,
the older versions are renamed rather than being deleted, using names of the form
“filename#1.extension”.  The number is chosen to generate a unique filename. Presence of
the unusual “#” character in the file name makes it easy to search for such files. Reconcile
reminds you of the unresolved conflict every time it runs, until the renamed file is deleted.
This feature can be turned off with the #alwaysnew directive, which reduces warnings
but runs the risk of losing conflicting updates.

• For safety’s sake, deleted and files and subdirectories are temporarily saved in a hidden
subdirectory named “.trash” rather than actually being deleted.  The trash is automatically



TR99-14 9 September 1, 1999

purged after several days, but before then you can recover files from it with standard file
copy or move commands.

Purge obsolete versions

Old journal entries become obsolete when they are known at all sites.  Reconcile tracks this by
maintaining a cumulative list of all sites being reconciled now and other sites that have
participated in past reconciliations with other known sites. It marks each version with the set of
known sites which have heard about the version.  Once a newer version is known at all sites
where the older version is known, the older version is no longer needed and is purged from the
journal.

If a known site has not participated in a reconciliation for a very long time, old versions will
accumulate and the journal will slowly grow.  To deal with this, Reconcile abandons known sites
which have not been heard from for a month or more.  (It generates warning messages for
several runs before doing this.)  If an abandoned site rejoins the set of known sites, its old
versions of files will be treated as conflicting versions, generating false warnings, rather than
being updated cleanly.

There is a special case for old deletion entries in the journal. If some, but not all, sites purge an
old deletion, the others will see this as a missing journal entry the next time they reconcile and
therefore restore the purged version entry.  To deal with this, reconcile discards month-old
deletions regardless of whether they are known at all sites.

Write updated journals

After updating, Reconcile writes out the updated journals at all sites.  In order to minimize the
possibility of a crash leaving a partial journal written, Reconcile actually writes the new journal
with extension “.jnw”, then renames it to “.jnl” once the write is complete.  Reconcile also saves
the previous copy of the journal by renaming it with extension “.jbk”.

Set the time

PC clocks are notoriously unreliable, so reconcile provides an option to keep them
approximately synchronized.  By program option, a site may be designated to be a time
reference. The time at that site is determined by creating a dummy file and reading its
timestamp.  If the time thus obtained differs from the local clock by more than a few seconds,
reconcile attempts to reset the local clock to agree with the reference site.  Note that this is at
best approximate, and that setting the clock may require administrative privileges.  A better
solution is to install a network time client.  However, this option can be useful for laptops and
other only occasionally connected Windows systems.

Remote Operation
When a site is named using the syntax <hostname>:<path>, reconcile uses the rexec or rlogin
protocol to open a client-server connection with a copy of itself running separately on
<hostname>, which it starts as /usr/sbin/reconcile, with most of the local parameters passed



TR99-14 10 September 1, 1999

through, and the –x option added.  A “server” reconcile, started with –x, expects to
communicate with a client through its standard input and output streams.

The client starts by issuing a getjournal command.  The server responds by reading the
local journal, updating it from the local site directory, and sending the journal to the client.  The
client then does all the actual reconciliation, issuing get, put, rename, delete, and
fixtime commands to update files as necessary.  At the end it sends back the updated
journal using a putjournal command, during which both client and server write out the
updated journal to their local disks.  More detail on this is to be found in the reference material.

Remote operation has several substantial advantage over direct reconciliation using a mounted
disk.  By running the directory scans and journal updates in parallel at each site it cuts the
overall running time in half.  The streaming TCP-based protocol it uses moves data more
efficiently than the block-by-block transfers typical of mounted file systems, thus saving network
time and permitting reconciliation over long-distance connections.  Round-trip interactions are
reduced to one per changed file.  No file server is required, only rsh or rlogin, which are part of
the standard TCP/IP protocol suite, plus a copy of reconcile installed at the server.

Remote operation requires a remote user name and password.  These are taken from
environment variables USER and PASSWORD respectively.  If the value of PASSWORD is
“*”, reconcile prompts for a password.  If the value of PASSWORD is empty or not given,
reconcile attempts to use rsh (which requires special authorizations at the server in lieu of a
password, and usually doesn’t work through firewalls.)



TR99-14 11 September 1, 1999

Examples
This section describes how to use Reconcile in several common scenarios:  saving to a
removable disk, moving files between computers, file sharing in a network, and server-less file
sharing.

Labeling your disks

It is important that you label each disk (both fixed and removable) with a unique and
meaningful name.  Use the label command to review and set the label of any disk before you
create a new directory on it.  For example, if your office computer is named "thor", you might
label its C disk with the command:

label c: THOR-C

Creating a new journal

To create a new journal for existing files in c:\doe, use the command:
reconcile -w c:\doe

Making private backups on a removable disk

Suppose you keep your working files in the directory c:\doe, and want to keep a backup copy
on a removable disk in drive z.  Create a journal for c:\doe as described above.  Also label the
removable disk, create an empty directory and journal on it:

label z: WORKCOPY
mkdir z:\doe
reconcile -c z:\doe

You only need to do the above steps once.

Once the removable disk is set up, you update it by running the command
reconcile c:\doe z:\doe

Reconcile generates messages describing any actions it takes and problems it finds.  You don’t
need to remember these messages on the spot, as any important warnings will be repeated until
you do something about them.  The first run may take a little while as many files are copied and
the journal initialized, but subsequent runs will be much faster.

A restriction in this example is that the removable disk must be large enough to hold all the files.

Local copy from a file server

The example above used a removable disk, but could equally well use a disk shared across a
network by another computer.  The only change is to replace the removable disk’s drive letter
(z: in the example) with the corresponding name of the network drive or subdirectory you use.
Thus, if the server’s copy happened to be available as /homes/doe on server hercules, the
reconciliation command would be:

reconcile c:\doe hercules:/homes/doe



TR99-14 12 September 1, 1999

Alternatively, if you are using a Windows file server which exports your working files as
\\herc\doe$, you can use the command:

reconcile c:\doe \\herc\doe$

You could also use a mounted disk letter (h:) instead of \\herc\doe$ after mounting it on the H
disk.

Since file servers are usually available overnight, you can schedule periodic automatic
reconciliations, preferably at a time when nobody is likely to be using the files involved.

Although in fact there are two complete copies of the files involved, one can think of this as
offering a single replicated set of files. The cost is the extra disk storage needed to store copies
of all the files.  The benefits are availability and performance.  Availability is obvious - you don’t
need the network or file server to work on the local copy.  Performance comes from the fact
that your computer doesn’t need to be in continuous communication with the file server, telling it
about every file it updates and checking for updates performed elsewhere.  The only overhead
is the periodic reconciliation, typically late at night when the computers and network are
relatively idle.

Moving  files between a workstation and a laptop or home computer

Now suppose you occasionally use a laptop or other second computer, and would like use your
files there.  You can do this using any medium accessible to both the laptop and the
workstation, for example a removable disk or a file server accessible to both.  The example
below uses the former, assuming a removable disk mounted on z:\doe.

It is convenient to use the same working directory name (c:\doe, in this example) on the laptop
as you do on your workstation.  Be sure to label the laptop’s hard disk uniquely, and then
create an empty directory and journal:

(Create the removable disk as above and move it to the laptop.)
(First time initialization)
label c: LAPTOP
mkdir c:\doe
reconcile -c c:\doe z:\doe

Now you’re ready to go.  To bring the laptop up to date:

(Update the removable disk on the workstation)
reconcile c:\doe z:\doe

 (Move the removable disk to the laptop and update the laptop)
reconcile c:\doe z:\doe

Notice that you use exactly the same command on both computers, assuming that the local
directory names are the same. When you’re done with the laptop and want to return to the
workstation, simply reverse the process:

(Update the removable disk on the laptop)
reconcile c:\doe z:\doe

 (Move it back to the workstation, and update the workstation)
reconcile c:\doe z:\doe



TR99-14 13 September 1, 1999

From now on, you can carry your files back and forth at will. If you happen to forget to run
reconcile at the beginning or end of a session or if you leave the disk behind, all is not lost.
Reconcile will automatically find the newest version of each file you modify, regardless of where
you do so.  If you update some file (say oops.doc) differently on both computers, you will get
the error message during reconciliation:

WARNING: oops#1.doc is a saved version of oops.doc

At this point you will probably want to look at both files to find the differences between them
and to copy any valuable changes from oops#1.doc into oops.doc. Different applications have
different ways to do this:  for text files there is a convenient tool named diff or windiff which
finds and displays a minimum set of differences.  If all else fails you can simply display or print
the files and compare them manually.  When you are satisfied that you have recovered
everything into oops.doc, delete oops#1.doc.

It is OK if you do not resolve the conflict right away.  Reconcile keeps a record of unresolved
conflicts in its journal file and warns you every time it runs, until you delete or rename the saved
file (oops#1.doc.)  It’s also easy to locate such files by searching for file names containing the #
character, which is unusual in normal file names.

File sharing without a server

Both Windows and Unix allow client computers to act as servers, offering other computers
access to their local disks.  This can be done using a variety of interconnection techniques
including networks, modems, and even printer cables. With any such connection, the client can
perform a reconciliation against the server. This is convenient for a portable computer.  It even
works across a dial-in connection provided that the amount of updated information is
reasonable.  In the general case one can imagine a very loosely coupled network of  portable
computers which occasionally meet and exchange information without ever needing a central
repository.

Backing up files by one-way reconciliations

Reconcile provides several modes to support “one-way” reconciliations, which simply replicate
changes from one site to a second.  The –o mode prevents a source site from being modified.
The –c mode makes a site be a copy target only, never as the source of a version or other
information (but allows re-use of existing information at the site if it matches.)  Thus, a strict
incremental one-way reconciliation from a primary to a backup site would be done using a
command like:

reconcile –o primary –c backup

The above command will leave a journal in the root directory of the primary site.  There is a site
mode to place the journal somewhere else, for example something like:

reconcile –o –j=/.reconciliations/primary.jnl primary –c backup



TR99-14 14 September 1, 1999

Command Line Reference
Syntax

reconcile [options] [[modes] siteID] ...
reconcile [options] –x=workingdir [modes] siteID]
reconcile {options and sites} –also {options and sites} …

Options (these apply to the entire command):
-h print a description of the command syntax, don't do anything else.
-n do not update anything; just say what would happen
-autocreate automatically create journals (-w flag) for site directories lacking them

-autocreate=Windows|Unix|Mac set the system type in autocreated journals
-ignoredeletions do not propagate deletions
-nochown do not attempt to update owner and group ID’s (Unix only)
-p pause and wait for dialog input if any errors encountered
-p=n pause for n (decimal) seconds before exiting (Windows only, n=10 by default)
-q quiet – suppress updating messages
-v verbose – display progress messages
-k=n keep deleted and replaced files in .trash for n (default 3) days before purging them
-k suppress keeping old files in .trash; just delete old files and rename old directories
-d="directive" apply directive throughout unless overridden
-l=tracefile log actions performed to tracefile
-t=tracefile trace details about actions performed to tracefile

Note:  tracefile may be specified differently for each remote site and all local sites
-x=workingdir identifies this instance of Reconcile as a remote server, responding to commands

issued over the remote connection, and optionally sets the working directory for the remote
command. “=workingdir” may be omitted, in which case the working directory at the
remote site defaults to the directory containing the journal file.  A server should be provided
with exactly one site.  This option is generated automatically by your local machine when you
specify a remote site, so you seldom use it explicitly.

-tag=# insert # (or other string) followed by digits in file names when renaming due to a version
conflict. “#” is the default tag.  The tag string should not end with a digit.

Modes (these apply only to the single site they precede on the command line):
-a abandon this site, that is, remove references to it in other sites’ journals.
-c use this site as a target only, re-using existing files if they match, but never copying from this

site to another one.  –c will create a journal if none exists.
-c=Windows|Unix|Mac set the system type of the site.
-cc re-use the journal but don’t recompute digests.  This assumes that the site is

maintained only by reconcile, so existing files at this site have not changed.  This is
not recommended, as there are too many ways for the journal and supposedly
unchanged directory to become inconsistent.

-w write a new journal, ignoring the old one entirely.
-w=Windows|Unix|Mac set the system type of the site in its new journal.

-r read-only journal.
-o read-only files.
-s use this site as a time reference
-j=journal explicitly sets the journal file name
-name=sitename explicitly sets the site name

Note that a new mode is established for each different site.



TR99-14 15 September 1, 1999

Site identification (siteID):

• Local sites are usually identified in the program parameters by giving the path to the top-
level directory “/path/name”.  Usually the directory contains the journal file
“/path/name/name.jnl” .  In this case the name used to identify the site is “label:/path/name”
where label is the Windows disk label or Unix host name.  Adding such a label insures that
the actual site names are unique on each computer or disk.

 The following alternative ways to identify a site in the program parameters are accepted:

1. The name used to identify the site can be specified explicitly using the mode “-
name=sitename”.

2. The journal journal file name can be provided explicitly with the –j mode.  The journal
file name may be either relative to the working directory, or absolute.

3. The parameter is “/path/name”, which is a directory as usual, but the journal file exists in
parallel with rather than inside of the directory, i.e. “/path/name.jnl” exists and
“/path/name/name.jnl” does not.  This form is accepted but not recommended.

4. The parameter is a file “/path/name.ext”, which is the journal file, and the corresponding
directory is “/path/name” obtained by stripping off the extension (usually ".jnl").  This
form is accepted but not recommended.

5. For network-mounted disks, reconcile applies the above rules relative to the path name
at the server rather than at the client, in order that site names remain consistent
regardless of whether or how they are mounted.

6. In the special case of the root directory of a disk, the disk label (for Windows) or host
name (for Unix) is used in place of the empty string for the root directory name.

Under Windows, the path may begin with either a drive letter (single letter followed by a
colon) or a UNC (Universal Naming Convention) reference to a host system, such as
“//herc/…”.  UNC names are treated a locally mounted file systems.

• Remote sites are identified in the form “hostname:/ path” where hostname identifies a
remote system which accepts the rexec/rlogin protocol and “/path” is a local site name on
that host, conforming to the above rules.  The hostname must be at least two letters long to
avoid confusion with Windows disk letters.

Anything after the first dot in the hostname is removed for the sake of naming the site; this
allows you to give a fully qualified host name for the sake of contacting the remote host
without accidentally introducing a different site name for what is in fact the same site.

If –j is used to identify a journal for a remote site, the journal file is a local file of the remote
system.  For remote sites only, the remote tracefile can be identified using the –t= or –l=
mode before the site specification, then overridden with subsequent –t= or –l= modes to
specify other remote logs.  The last –t= or –l= specification in the command line also
names the local tracefile.



TR99-14 16 September 1, 1999

Remote sites must be accessible via the rexec or rlogin protocols (as used by the Unix rsh
and rlogin commands.)  These protocols require a user name and sometimes a password,
taken from the environment variables USER and PASSWORD respectively.  If the given
password is “*” then reconcile prompts interactively for a user name and password.

Given no password or an empty password, reconcile attempts to use the privileged “rexec”
protocol, for which you must be running as root on the local machine.  (Windows users are
always running as root for this purpose.) This requires careful remote system configuration
setup.  See the remote system’s manual pages for the rsh (rexec) and rlogin commands for
details, and contact your local system administrator to verify that rexec is allowed by local
security policies.

Case is significant for the purpose of naming files or directories under Unix, but is not significant
in comparing site names.  “/” may be used rather than “\” as a path separator, even under
Windows.  Internally, reconcile always uses “/” for path separators, translating them to “\” just in
time to perform local file system operations.

 Regardless of whether a local of global site name is provided, Reconcile identifies sites uniquely
using the remote site name syntax, inserting the host name, disk label, or mount point at the
beginning of the local directory name as appropriate.  The goal of this replacement is to get a
consistent unique name for the site regardless of whether it is accessed directly, through a mount
point, or remotely.  Therefore it is very important that you label each disk (both fixed and
removable) with a unique and meaningful name.

Multiple reconciliations (-also parameter on command line):

Several distinct reconciliations can be performed sequentially in one command by separating
their parameters with the keyword “-also”.  All options and modes are reset for each
reconciliation, just as if each one were done on a separate command line.

Obsolete modes and parameters:

The following option and parameter flags are accepted but may be removed some time in the
future and should be avoided:

-debugname=name.ext generate extra trace output for this file
-pn equivalent to –p=n (n is a number)
-znolocks do not lock open files
-zsbin use an alternative (“sized binary”) representation for bulk file

transfer during remote reconciliations.
-i interactive problem repair after end of reconciliation run
-j name or -jname equivalent to –j=name
-l name or -jname equivalent to –l=name
-t name or -jname equivalent to –t=name
-c directive or -cdirective equivalent to –c=directive



TR99-14 17 September 1, 1999

File Formats
Files used by reconcile

The following files may be used by reconcile.

<site>.jnl - journal of the contents of directory hierarchy <site>

<site>.jnw - new the journal being written (exists temporarily only)

<site>.jbk - previous copy of <site>.jnl

.reconcilerc - special directives applying to selected subdirectories

<filename>#nnn[.<ext>] - saved conflicting version of file <filename>[.<ext>]

reconcile.log - default name for trace of actions performed, if not overridden by -l or -t
option.  These files are created in the current working directory.  The trace file contains
the various update and error messages generated during reconciliation.  If the -t option
is used, it also contains detailed information about why reconcile performed the actions.

Reconcile.oldlog – saved previous copy of reconcile.log.

.trash/ – temporary holding subdirectory for files and subdirectories which have been deleted
or replaced in the last few days.

Journal file format

Journal files are standard text files that can be observed (and even changed, at your own risk)
with any text editor.  The files contain a header line, several lines identifying known sites, and
then one line for each version of each file.

Header:  Journal of <label>:/<root> (<systype>) - <programID>

Is the first line of a journal.  <label> is the disk label (under Windows) or host system name
(under Unix),  /<root> is the fully qualified name of the root directory of the site,
<systype> is the system type (DOS or UNIX at present), and <programID> gives the
name and version of the Reconcile program that wrote the journal.

Version:  + <timestamp> <name><t> <link> ?mask dt=<digest> <remarks>

Identifies a particular version of a particular file.

<timestamp> is the date and time the action occurred (“yyyy-mm-dd hh:mm:ssZ”, where Z
indicates Coordinated Universal Time)

<name> is the file's name, followed directly by the type <t> (no intervening white space)  The
name may be surrounded by quotation marks if it contains white space or potentially ambiguous
characters.

<t> is a character indicating the file’s type:

(nothing) for an ordinary file
: for an ordinary file (used when the file name ends with : / @ or ?)
/ for a subdirectory



TR99-14 18 September 1, 1999

@ for a symbolic link
? for unknown type and missing files in the get/put protocol described later

<link>, present only for symbolic links, gives the symbolic link reference.

?mask is a bit-mask indicating which other sites do not know about this version yet.  The
individual mask bits are defined in the known site ($) lines.

dt=<digest> gives a hash code, or digest, of  the contents of the file, used to determine if files
are identical even though they might have different dates.  “dt” means the file looks like a
text file, “db” is used for binary files.

<remarks> are arbitrary comments.  Saved files are indicated by the special remark:
!was <original name>

and deleted directories by the special remark:
!deleted <original name>

Deletion:  - <timestamp> <name><t> ?mask

Identifies a deleted file, no longer present at the site.

Missing version:  > <timestamp> <name><t> <link> ?mask dt=<digest>

Identifies a file for which another site has a more recent version, but which could not be updated
locally due either to the –o mode or to some problem in the copy operation.

Missing deletion:  < <timestamp> <name><t> ?mask

Identifies a file for which another site has a more recent deletion, which can not be carried out
locally due to the –o mode or some problem.

Known site:  $ <timestamp> <sitename> ?mask

Identifies some other “known site” associated with this site.  The timestamp gives the date and
time of the most recent reconciliation for the known site, and the hexadecimal mask defines the
mask bit used for this site in version lines.

Directive:  #verb <pattern>

Directives (described in detail below) may be included directly in journals.  If they do appear
they are preserved, propagated between journals, and work the same way as they would if they
appeared in .reconcilerc.  A drawback of placing directives directly into journals is that there is
no convenient way of removing them other than by manually editing them out of all sites’
journals at the same time.

Subdirectory:  Journal of label:/<root>/<subdirectory>

After all the entries for a given directory have been listed, the journal file contains sub-journals
for each of the sub-directories listed. Each of these consists of a new set of directives and
version lines, preceded by a header line identifying the site and full name of the subdirectory
path:



TR99-14 19 September 1, 1999

End of journal:  End of journal

The entire journal file is ended by a line containing the literal string “End of journal”.

Directives and .reconcilerc files

Any directory or subdirectory may contain a file named “.reconcilerc”, containing directives
which modify processing of that directory and its subdirectories.  Comment lines starting with an
asterisk are also accepted. Directives apply to matching files in the directory in which they
appear and also all subdirectories of that directory.

Directives may also be edited into a journal file, in which case they apply to the current directory
or subdirectory defined by the most recent header line.  Top level directives can also be
provided by the –d option.

Patterns, indicated by <pattern>, are templates for file names, matched according to the
following rules:

• Path separators (“/” and “\”) separate component levels in hierarchical file names.

• Asterisks ("*") are wild cards, matching an arbitrary sequences of zero or more characters
in a single file name component, not including path separators.  Thus, to match all .mbx files
within a mail subdirectory, use “mail/*.mbx”.

• Patterns must match the entire file name components at each hierarchical level, so to ignore
all files whose names contain the letters “foo” you would use *foo*.

• If several patterns match a file name, the deepest match in the hierarchy is used; within a
single level the last match is used.  This allows more specific patterns to override more
general ones.

• Patterns or parts of patterns may be enclosed in double quotes; a pair of double quote
characters within a quoted pattern represents one double quote character.  Double quotes
are used to include white space and other unconventional characters in file names; they do
not override wild cards or other special character meanings.  There is no way to escape a
wild card or path separator.

• A pattern may be followed by a space and the word “onelevel”, in which case it applies
only to the current directory, not to any subdirectories.

Reconcile accepts the following directives:

#ignore <pattern>

causes matching files to be ignored during reconciliation. Reconcile creates the following implicit
directives at the beginning:

#ignore *.jnl
#ignore *.jbk
#ignore reconcile.log
#ignore reconcile.oldlog
#ignore .trash



TR99-14 20 September 1, 1999

These can be overridden by #normal directives if needed.  Note that the .reconcilerc file itself is
not automatically ignored but is propagated normally.  If you specify a log file name other than
“reconcile.log” using the –l or –t options, the corresponding .log and .oldlog files are ignored.

#alwaysnew <pattern>

tells reconcile always to copy the newer version of a file, without preserving the older version
even in the case of a detected conflict.  Use with caution!  You can lose conflicting updates
this way.

#deletedirs <pattern>

tells reconcile always to propagate directory deletions, rather than renaming the deleted
directory and generating a warning message.

#binary <pattern>

disable automatic line-end translation in files matching the pattern.  The alternative directive
#notranslate is retained for compatibility with previous versions of the program but may be
dropped in the future.

#text <pattern>

forces automatic line-end translation in files matching the pattern.

#normal <pattern>

overrides all the above directives, restoring normal handling to files with matching names.  Note
again that directives from subdirectories override directives from parent directories in a file
hierarchy; within a given directory the last matching directive overrides any previous ones, and
directives from the .reconcilerc file override directives stored directly in the journal.  The top
level has the lowest priority and directives from the command line override the implicit #ignore
directives listed above.

#mapunc <prefix>[$] <replacement>

maps the file names used to identify sites mounted from file servers into a standard form.  This is
primarily used to connect the “UNC” names used by Windows file with names used by the Unix
“rcp” command and by remote reconciliation. The <prefix> is the beginning of a UNC file
name, typically “//server/sharename”, and the <replacement> replaces it in directory or journal
names used to identify sites.  The optional $ at the end of the prefix matches a $ at the end of
the sharename rather than at the end of the server name.  For example, //herc/smith$ is
mapped to hercules:/homes/smith in the example below.  Note that forward slashes
should be used throughout.

If no explicit #mapunc directives are given, reconcile automatically inserts the following default
mappings, which are appropriate for the MERL file server configuration:

#mapunc //herc hercules:/homes
#mapunc //herc$ hercules:/homes
#mapunc //herc/homes hercules:/homes



TR99-14 21 September 1, 1999

#mapunc //herc/projects hercules:/projects
#mapunc //herc/collagen hercules:/projects/collagen

If #mapunc directives are used they must be appear before they are needed, i.e. before any use
of a mounted share or explicit UNC file name.  Practically speaking this means they must
appear at the beginning of the command line.  UNC mappings are only needed in Windows,
and are not used at all for local disks, nor when the server name is given explicitly to indicate
remote reconciliation.  Order is important; put the more general mappings before the more
specific ones since the directive matching mechanism searches for a match from last to first.

Remote commands and get/put protocol
If Reconcile is started with the –x option, it functions as a server under the control of a client
copy of Reconcile, communicating through the standard input/output streams established by the
rsh/rexec protocol.  There must be exactly one site in the command line with the –x option, and
the remote commands all apply to this one site.

Remote commands are formatted as text lines sent from the client to the server:
getjournal

putjournal

get <name><t> [was <timestamp>]

put <name><t> [was <timestamp>]

rename <name><t> [was <timestamp>] <newname>

move <name><t> [was <timestamp>] <newname>

delete <name><t> [was <timestamp>]

fixtime <name> <timestamp>

In all the above, the syntax of <name>, <t>, and <timestamp> is the same as in journal files.
The square brackets indicate optional data.  When provided, the current version of the named
file must exist and have the given timestamp.  When <t> is the character ?, the file being
replaced in a put command must not currently exist.

The confirmation for most commands is a line containing of:
ACK <verb>

However, the getjournal and get commands respond positively with the contents of the journal
or the object being gotten, respectively, instead of an ACK.  The negative response consists of
zero or more error messages followed by

NAK <verb>

The putjournal command is followed immediately by the contents of the journal.  It is allowable
to mix other commands in with the putjournal stream.  The put command is immediately
followed by the contents of the object being put.  In both get and put commands, the object is
described by a header line, which is one of:



TR99-14 22 September 1, 1999

File <name><t> <timestamp> mode=xxx uid=n gid=n <enc>

Dir <name><t> <timestamp> mode=xxx uid=n gid=n

Link <name><t> <timestamp> mode=xxx uid=n gid=n <linkname>

where <name> redundantly names the file, <t> gives its type, <timestamp> is its timestamp
(most recently modified time), the mode, uid, and gid are Unix file protection bits in octal, user
ID, and group ID (omitted if zero) respectively, and <enc> gives the encoding for the
subsequent file contents.   For subdirectories and links the header line is the entire response.

For files, the header is followed by the file, encoded as described by <enc>.  At present the
preferred encoding is “base64”, and the file is represented by the MIME base64 encoding of
binary data into printable data.  Other encodings are possible in the future.

 The end of an encoded file is indicated by a line containing
End of file <name>


	Title Page
	Title Page
	page 2


	Reconcile Users\' Guide
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22


